

Project co-funded by the European Commission under the
H2020 Programme.

Grant Agreement nº 732463

Project Acronym:
OpenReq

Project Title: Intelligent Recommendation Decision Technologies for

Community-Driven Requirements Engineering

Call identifier:
H2020-ICT-2016-1

Instrument:
RIA (Research and Innovation Action)

Topic
ICT-10-16 Software Technologies

Start date of project
January 1st, 2017

Duration
36 months

D1.4 Project standards and infrastructure document

Lead contractor:
TU Graz

Author(s):
TU Graz, ENG, HITEC, QT, SIEMENS, UH, UPC,

VOGELLA, WINDTRE

Submission date:
June 2017

Dissemination level:
PU

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 2 of 32

Abstract: This document describes the technological framework and scope as well as

specifies the project standards and the development infrastructure in place.

This document by the OpenReq project is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Unported License.

This document has been produced in the context of the OpenReq project. The OpenReq project

is part of the European Community's H2020 Programme and is as such funded by the European

Commission. All information in this document is provided "as is" and no guarantee or warranty

is given that the information is fit for any particular purpose. The user thereof uses the

information at its sole risk and liability. For the avoidance of all doubts, the European

Commission has no liability is respect of this document, which is merely representing the

authors view.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 3 of 32

Table of Contents

1. INTRODUCTION .. 6

2. DESCRIPTION OF TECHNOLOGICAL
INFRASTRUCTURE .. 7

3. OVERALL ARCHITECTURE (SYSTEM COMPONENTS
AND THEIR RELATIONSHIPS 8

a. Recommender Engine .. 9

b. Dependency Engine .. 9

c. Group Engine ... 9

d. Intelligence Engine ... 9

e. Knowledge Infrastructure ... 10

OpenReq Interfaces .. 10

OpenReq Cloud Services ... 10

4. DEFINITION OF DEVELOPMENT PROCESS 12

Roles ... 12

Events ... 13

Collaboration ... 13

Version Management .. 13

5. QUALITY ASSURANCE .. 14

6. IMPLEMENTATION AND CODING STANDARD 15

7. PROJECT INFRASTRUCTURE FOR INTEGRATION,
TESTING AND DEPLOYMENT 16

Enabling technologies .. 16

Maven ... 16

Gradle ... 16

Jenkins ... 16

JMeter ... 17

Sonarqube .. 17

Docker .. 17

JUnit ... 17

Git Repository .. 17

Tuleap ... 18

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 4 of 32

Gerrit ... 18

Swagger ... 18

Continuous Integration (Integration Process) 19

Git branching policy .. 20

Cloud services Infrastructure ... 20

“Hello OpenReq” environment ... 20

8. DOCUMENTATION ... 22

Deliverables ... 22

Technical meeting agenda and minutes ... 22

Other Documents .. 23

9. WHEN TO USE WHICH TOOL 24

For Development ... 24

For Reporting ... 24

For Communication .. 25

10. EVALUATION OF TECHNICAL STANDARDS 26

ANNEX A. WORKFLOW OF DELIVERABLE REVIEW . 27

ANNEX B. DELIVERABLE REVIEW: INSTRUCTIONS FOR
REVIEWERS .. 29

ANNEX C - TULEAP ... 30

REFERENCES ... 32

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 5 of 32

List of Figures
Figure 1 Schematic approach of OpenReq Services. ... 7

Figure 2: OpenReq overall architecture. .. 8

Figure 3: Examples for explicit and implicit feedback. ... 9

Figure 4: Example trend of different app review types. 10

Figure 5: OpenReq integration process. .. 19

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 6 of 32

1. Introduction

This document presents the results of tasks T1.4 Specification of technological and project

standards and T1.5 Project infrastructure for integration, testing, and deployment.

After an overall view of the technological infrastructure (Section 2) and a reminder, basically

extracted from the DoA) of the OpenReq architecture (Section 3), the deliverable describes

the development process that will follow the Scrum principles (Section 4) and exposes the

main principles of the quality assurance to be carried within the project (Section 5),

Section 6 lists the main coding standards to be applied in the development process, and Section

7 describes in detail the proposed infrastructure for integration, testing and deployment of the

OpenReq platform and its different components.

The last Sections (8 to 10) deal with the practical organization about deliverables’ preparation

and review, and evaluation responsibilities and procedures. This is further expanded in

Annexes 1 to 3.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 7 of 32

2. Description of technological infrastructure

For the OpenReq Services we plan to run state of the art Spring-Boot Applications offering

RESTful services in the backend which connect to MySQL Databases. For presenting user

interfaces to the end-users, we include the “Thymeleaf” Framework in combination with

Bootstrap.

The Spring boot Applications run on a Java Virtual Machine and there is no need for installing

an Application Server such as Tomcat.

Spring boot applications are programmed in the programming language JAVA / JAVA EE. If

specific libraries are needed for the implementation of some components (e.g., dependency

detection), other programming languages such as python (based on the used libraries) can be used

but still RESTful services will be offered.

The following figure illustrates the schematic approach of the OpenReq Services.

Figure 1 Schematic approach of OpenReq Services.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 8 of 32

3. Overall architecture (system components and their

relationships

The OpenReq overall architecture will be composed of different parts: the OpenReq global

database which is based on the OpenReq Ontology, the OpenReq REST Services and the different

stakeholder applications who use the services (see Figure 2). Besides the trial partner

applications, the OpenReq Prototype (a showcase of major OpenReq functionalities) accesses the

different OpenReq services. The OpenReq Prototype includes basic OpenReq functionalities

offered to end users through an understandable and user friendly user interface. In all cases where

end users interact with OpenReq functionalities, a special focus will be given on usability.

Figure 2: OpenReq overall architecture.

The OpenReq (REST) services include, among others, the following engines (components). The

OpenReq Prototype and the industry trials exploit the basic functionalities provided by the

OpenReq services. Furthermore, services themselves exploit / integrate the services of other

components, for example, release planning uses functionalities of dependency detection,

recommendation, and group decision making (for simplicity, this is not taken into account in the

architecture figure). In the following we give a short overview on the different engines shown in

Figure 2 (for more details we refer to the DoA).

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 9 of 32

a. Recommender Engine

The recommender engine (component) will provide a set of standard micro-services, e.g.,

querying for new requirements, responsible stakeholders, or reusable requirements. A

conversation with the system can be triggered depending on the type of the query and the

stakeholder activity. Simple recommendations will be delegated to collaborative or content-based

recommenders.

b. Dependency Engine

This component uses a combination of content-based recommendation, sentiment analysis, and

natural language processing that support the detection and extraction of requirements

dependencies and requirements tracing. For repairing inconsistent requirements, a conflict

resolver is used.

c. Group Engine

This component offers support for groups of users in group decision processes. In a first step, the

preferences of the different stakeholders have to be collected (for example, regarding a specific

requirement). After the preference acquisition is done, this component also supports the

moderation of the decision process in such a way that consensus among stakeholders can be

achieved (in case of contradicting preferences).

d. Intelligence Engine

This component will encapsulate an analytics backend and include text-mining algorithms that

allow for analysis of natural language texts such as text-based documents or user feedback (user

feedback can be either explicit or implicit - see Figure 3). In addition to that also interactive

visualisation will be supported by this component. In particular, interactive visualisation supports

stakeholders in visualizing descriptive and predictive analytics data. An example of such a

visualisation is shown in Figure 4. Figure 4 presents the trend of different app review types (e.g.,

a user requests a new feature or a bug to be fixed) over time, for a specific app and over its

different versions.

Figure 3: Examples for explicit and implicit feedback.

Explicit	Feedback		
(e.g.,	Reviews,	Social	Media)	

Implicit	Feedback		
(e.g.,	Interac on	&	Execu on	Data)	

Sensors	Crawler	

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 10 of 32

Figure 4: Example trend of different app review types.

e. Knowledge Infrastructure

This component will be responsible for managing OpenReq ontologies, glossaries, indexes (e.g.,

references), stakeholder profiles, user feedback and usage and interaction logs.

OpenReq Ontologies will be (1) the RE ontology (language for modelling requirements including

concrete instances, i.e., the requirements model), (2) the reuse and patterns ontology (language

for requirements reuse and patterns), and (3) different domain ontologies (modelling the domains

of the applications, e.g. the trials).

The OpenReq reuse and pattern catalogue provides a reusable knowledge base about

requirements. The catalogue will be organized according to one or more classification schemas

that will be derived from some of the ontologies mentioned above.

Communication among OpenReq components and the integration of OpenReq components with

the trial clients (e.g., the Siemens Doors client) will be supported by OpenReq Interfaces. The

approach to provide these interfaces will be the following.

OpenReq Interfaces

The OpenReq Interfaces will provide open, unified interfaces for easily integrating OpenReq into

external tools in form of connectors (see Figure 1). Examples for high-level interfaces include

among others (a) register/Unregister for Recommendation, (b) push context, (c) display

recommendation, (d) open artefact and (e) configure.

As a proof of concept we will integrate these interfaces into the tools of the OpenReq industry

partners and associated Open Source communities within the scope of the trial implementations.

In order to assure the accessibility of OpenReq in Cloud contexts, OpenReq will be built upon

the following service infrastructure.

OpenReq Cloud Services

Due to the massive amount of data which needs to be collected and managed, OpenReq will be

made cloud-ready. In particular, OpenReq will be enabled to make use of the cloud data storage

to have virtually centralized data storage of high scalability that is easier to access, process, and

manage.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 11 of 32

Furthermore, OpenReq will provide a dashboard, that summarizes information, exposes the

interactive visualization driven by the Intelligence Engine (see d. Intelligence Engine), as well

as various performance measurements. The dashboard will be used to maintain the OpenReq

Cloud Platform.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 12 of 32

4. Definition of development process

In the OpenReq project we will use an iterative and incremental software development process

following the principles behind Scrum.

The software development process is managed with the tool Tuleap (https://mast-

tuleap.informatik.uni-hamburg.de/).

The OpenReq product backlog contains four types of items: Description of Action (DoA), Epics,

User Stories, and Work Items.

These items are tracked in three trackers: DoA and Epics (DE) Tracker, User Stories (US)

Tracker, and Work Items (WI) Tracker.

The DE Tracker contains the high level tasks (as per Description of Action, DoA) and the Agile

Epics. The DoA will be already populated, based on the WP descriptions, and should not be

changed. Therefore, only the Epics, individuated from the DoA (e.g., after the interviews with

the trial partners), need to be inserted in this tracker.

The US tracker contains the user stories (for example, from the requirements gathered in T1.2)

that are identified to implement OpenReq. The user stories follow a traditional Agile template.

User stories are divided in smaller items which are tracked in Work Items. A user story has to

refer to an Epic or a DoA Task in the Epics tracker (in the Artefact Link field).

The WI tracker contain tasks of different types. These items can be part of a user story, or not

(e.g., an implementation task, a simple bug fix, a change request or a finalization of meeting

minutes). The Work Items are not necessarily related to development, and should contain also

other types of activities (e.g., prepare presentation for next meeting). Therefore, a Work Item can

either directly relate to a DoA item in the Epics tracker or to a User story item.

Sprints contains items that belong to the same Scrum Sprint. A Sprint can contain Epics (and

relative User stories), and/or Work Items (for those work items that are not part of a user story

but still contribute to a DoA).

As releases are tied to deliverables, an item in this tracker can contain either a set of Epics, and

Work Items (most likely in the case the deliverable type is R). The release date corresponds to

the latest date indicated in the DoA.

Release can be releases of documents or of software components.

In case there is a need to explicitly target a release when working on a Work Item, User Story or

Epic, you can mention it in the description field. For example “this contributes to rel #id” will

create a link to that release.

A release can be created and tracked using the Agile Dashboard, a Kanban-like visualization of

the backlog.

Roles

The Development Team is composed of functional sub-teams divided according to what is

indicated in the DoA of each WP Task. The resources within each partner's sub-teams are self-

organized.

In general, the Task leader (i.e., an individual within the partner responsible for the task as

indicated on the DoA) will take the role of Product Owner. A Scrum Master role, although not

https://mast-tuleap.informatik.uni-hamburg.de/
https://mast-tuleap.informatik.uni-hamburg.de/

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 13 of 32

specifically enforced will be taken by the Task leader itself (e.g., a different individual within the

same partner organization of the Product Owner). However, the roles are not strictly enforced and

can be fine-tuned or modified by the Task leaders on a case-by-case basis.

Events

Within each Development Team, a lightweight Sprint planning will happen before each Sprint to

decide the artefacts (Epics/User stories/Work Items) that will be included in the Sprint. The

recommended duration for a Sprint is between two and four weeks.

A cross-development team Daily Scrum “standup” meeting (i.e., between development teams in

different partner organizations) will not be enforced. However, Daily Scrum should take place

for a team in the same partner organization. A cross-development Sprint Review will not be

enforced, however, each sub-team is expected to document the output (i.e., increment) of the

Sprint in the trackers. A cross-development Sprint Retrospective will not be enforced. At the end

of each Sprint each sub-team should have their own retrospective. However, a Retrospective will

take place at the end of the Task.

Collaboration

In addition to the issue tracker Tuleap, the OpenReq Team collaborates also using the mailing list

openreq-devel (available as an integrated instance of Mailman in Tuleap) and a chat channel

(using Slack, openreq.slack.com).

Version Management

As Version Control System we use GIT where all partners can access the needed information.

Special branches for all the work packages as well as for the tasks can be established. Deployment

of new OpenReq Versions can also be done out of special GIT branches (for instance

“releases_WP4”). For details see section on Git branching policy.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 14 of 32

5. Quality assurance

The quality assurance process in the OpenReq project is, like the work process, also an iterative

process. During this process, it will be defined which goals are fulfilled within a specific release.

The quality assurance process will take place for each release of the project. Quality assurance

operated by each of the partners of the OpenReq project will conform to the normal quality

procedures operating within their organisation, at the discretion of the individual partner

representatives. Procedures that are mandatory within the partner organisation will be

implemented. The quality of the work undertaken in each WP is responsibility of the

corresponding WP leader as specified in the DoA, under the supervision of the Scientific Manager

and the Project Coordinator.

The quality of each deliverable is in the responsibility of the corresponding work package leader

as specified in the DoA, under the supervision of the Project Coordinator. Before a deliverable is

submitted to the EC, the quality assurance has to be done in a 2 stage process with responsibilities

via representatives: 1 WP Leader, 2 Extern (not included in the Work Package / in some cases

not included in the preparation of the deliverable). The procedure for reviewing these deliverables

inside the consortium is presented in Annexes A and B of this document.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 15 of 32

6. Implementation and coding standards

The implementation standard for the Java programming language will follow the guidelines of

Eclipse Platform (https://wiki.eclipse.org/Coding_Conventions) regarding coding convention,

which in turn are based on the Oracle Java Coding Conventions.

The Javadoc standard will be used to document the relevant code units (packages, classes,

methods) following the conventions for writing Java API specification indicated by Oracle

(http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html).

The implementation standard for the Python programming language will follow the Google

Python Style guide (https://google.github.io/styleguide/pyguide.html).

The requirements for standards and documentation for other programming languages and

framework will be added to this document on a case-specific basis.

The OpenReq platform will be under EPL (Eclipse Public License) licence

(https://www.eclipse.org/org/documents/epl-v10.html)

https://wiki.eclipse.org/Coding_Conventions
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
https://google.github.io/styleguide/pyguide.html
https://www.eclipse.org/org/documents/epl-v10.html

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 16 of 32

7. Project infrastructure for integration, testing and

deployment

This section describes the work made within Task 1.5 and its results. In particular, this chapter

illustrates the configuration and deployment of the OpenReq project infrastructure and the “Hello

OPENREQ” environment which provides a basis for the OpenReq iterative process.

Enabling technologies

This section describes the integration and development technologies that have been selected for

the realization of the OpenReq project infrastructure.

The chosen integration technologies are illustrated below:

Maven

Apache Maven [1] is a software project management and comprehension tool for building and

managing any Java-based project. This tool automates the activities related to building a software

project in order to minimize the risk of human’s errors and to make the build process faster. In

particular, it simplifies and standardizes the project build process by handling the compilation,

distribution, documentation and team collaboration.

The Maven tool is centered around the concept of a project object model (POM). A POM is an

XML file which contains information about the project structure and its resources (i.e. source

code, test code, project dependencies). While executing a task or goal, Maven looks for the POM

in the project directory and gets the needed configuration information to build the project.

The Apache Maven tool is used within the OpenReq integration infrastructure mainly for the

following build process activities:

● Compiling source code;

● Packaging compiled code into JAR or WAR files.

● Supporting technology to Jenkins builds.

The Apache Maven tool provides to OpenReq developers a complete build lifecycle framework

that automates and standardizes the build of OpenReq projects.

Gradle

Gradle [2] is an open source build management system supporting multi-project and multi-

artefact builds. A project using Gradle describes its build using a build.gradle file based on a

Domain Specific Language (DSL). A Gradle build consists of one or more projects and each

project consists of tasks which represent a piece of work which a build performs (e.g., compile

the source code, create a jar, generate Javadoc, publishing some archives to a repository).

In the context of OpenReq, Gradle will be used as build tool alternative to Maven to guide the

build lifecycle of the platform components.

Jenkins

Jenkins [3] is an open source automation server that allows continuous integration and delivery

of projects, regardless of the platform you are working on. Continuous integration means that the

code provided by the developers is integrated as early as possible in order to avoid the problem

of finding later issues in the build process lifecycle.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 17 of 32

Jenkins enable the continuous integration defining a list of steps to execute (e.g. perform a

software build, run a script etc.). The common practice is that whenever developers made changes

to the source code a build should be triggered. In particular, it picks up the changes made by

developers to source code and triggers a new build. The new build will be available in the Jenkins

dashboard. Automatic notification about the build success or failure can also be sent back to the

developers. Within the OpenReq integration environment the Jenkins server is configured in order

to automate the build process of Maven projects. For build process details see section on

Integration Process.

JMeter

jMeter[4] is an open source load and performance testing software. It can be used to simulate a

heavy load on a server, group of servers, network or object (e.g. Java objects, Java Servlet,

databases etc..) to test its strength or to analyze overall performance under different load types.

Within the OpenReq project, JMeter is used to test the performance of the OpenReq capabilities

available in the cloud.

Sonarqube

Sonarqube[5] is an open source platform for continuous inspection of code quality. It helps for

various tasks and provide reports on duplicated code, coding standards, unit tests, code coverage,

code complex, comments, bugs and security vulnerabilities. Within the OpenReq integration

environment, Sonarqube is used in combination with Jenkins in order to provide fully automated

analysis.

Docker

Docker[6] is an open-source project that automates the deployment of applications inside

software containers. It is promoted by the company Docker, Inc.

Docker provides an additional layer of abstraction and automation of operating-system-level

virtualization on Windows and Linux. Docker uses the resource isolation features of the Linux

kernel.

Within OpenReq Docker will be used as one of the target containers to distribute the OpenReq

platform.

JUnit

JUnit[7] is an open source unit test framework which uses annotations to identify methods that

specify a test.

A unit test is a piece of code written by a developer that executes a specific functionality in the

code to be tested and asserts a certain behaviour or state.

JUnit will be the main framework used for unit testing in the OpenReq development process.

Git Repository

Git[8] is a version control system for tracking changes in computer files and coordinating work

on those files among multiple people. It is primarily used for software development, but it can be

used to keep track of changes in any files.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 18 of 32

Git supports rapid branching and merging, and includes specific tools for visualizing and

navigating a non-linear development history. In Git, a core assumption is that a change will be

merged more often than it is written, as it is passed around to various reviewers. In Git, branches

are very lightweight: a branch is only a reference to one commit. With its parental commits, the

full branch structure can be constructed.

Being embedded in Tuleap and compatible with Jenkins, it has been chosen as the primary

repository for OpenReq source code.

The releases will be organized using the eclipse branching strategy [12].

Tuleap

Tuleap[9] is a web-based, open source (GPLv2 licence) project management system for managing

application lifecycles, Agile development and design projects. The platforms allows managers,

developers and researchers to collaborate on a common ground using specific and integrated tools

(e.g., git repositories for developers, or document management systems for managers). Tuleap

supports the creation of trackers for requirements and user stories, as well as code (e.g., bugs),

which facilitates the way of working with Scrum. It also supports Kanban for a general overview

of the project progress. On top of the integrated trackers and repositories, in OpenReq Tuleap is

used to manage the mailing lists, a project-wide wiki, and storing/versioning documents.

Gerrit

Gerrit[10] is a web-based, open source (Apache v2 license) code review management tool which

integrates with Git. Gerrit is integrated with Tuleap (and the relative git repositories) to provide

the possibility to do code reviews to the contributors working on the OpenReq components.

The chosen development technologies are illustrated below:

● Eclipse: an integrated development environment (IDE);

● Spring Boot

● MySQL

● Thymeleaf

● Bootstrap

Swagger

Swagger[11] is a powerful open source framework backed by a large ecosystem of tools that

helps design, build, document, and consume RESTful APIs.

Swagger uses the OpenAPI Specification to describe API. The goal of OpenAPI is to define a

standard, language-agnostic interface to REST APIs which allows both humans and computers

to discover and understand the capabilities of the service without access to source code.

The ability of APIs to describe their own structure is the the main benefit Swagger: by reading

API’s structure, the tools can automatically build interactive API documentation. Swagger can

also automatically generate client libraries for APIs in many languages and explore other

possibilities like automated testing.

To build consistent documentation of the Microservices developed for the OpenReq platform,

API will be described using the OpenAPI Specification.

https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Agile_software_development

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 19 of 32

Continuous Integration (Integration Process)

The OpenReq integration process will trigger the builds of the OpenReq Platform using the

Jenkins tool hosted in Engineering. In particular, as depicted in Figure 5, the main steps of the

integration process are:

● Pick up the latest releases of the OpenReq platform components from the GIT source

repositories in Tuleap;

● Build a snapshot of the OpenReq platform. Jenkins will be configured to read the

Maven POM files or Gradle build files of the component’s projects and to check if

there are dependency conflicts between components. If the build fails the developers

will be notified;

● Once the build is successful, the resulting artefacts will be deployed on the Cloud

Services Infrastructure, if applicable (see section Cloud services Infrastructure), and

made available in the Git Repository;

● Junit tests, if any, will be performed.

Figure 5: OpenReq integration process.

OpenReq integration process will work on two parallel environments:

● A testing environment where builds will be performed automatically every time a new

commit will be performed in the releases branch (see section on Git branching policy).

The build outcome will be notified to the developers by email. The outcome will be

deployed in the cloud infrastructure and stored in the repository for local installations.

● A stable environment where builds will be performed using commits in the master

branch. These builds will be semi-automatic, a build issue management will be

performed by the team responsible for integration in Engineering to ensure all deployed

releases for this environment are stable. Engineering will take care to perform all tests

provided by developers and notify the results.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 20 of 32

For both environments SonarQube is setup to perform a static analysis of the quality of the code,

to give helpful feedback to the developers.

Git branching policy

The OpenReq components will be available in the Git repositories provided into Tuleap. The

branching model used in the Git repositories is the one described at [12]. In particular, a Git

repository will be provided for each component, and, according to the chosen branching model,

these repositories will hold two main branches:

● releases: this branch contains the source code of different releases of the OpenReq

components:

○ <component_name>/releases/<release_name>

● master: this branch contains the source code of the latest stable version of the OpenReq

components:

○ <component_name>/master/<stable_release_version>

An openreq-platform repository will be created to manage the source code for the

orchestration of the OpenReq components.

The artifacts generated during the build process (i.e. jar and war files) will be stored in the

component specific repository (e.g.

<component_name>/releases/<release_name>/<artifact_name>).

Cloud services Infrastructure

To host the OpenReq cloud services, a virtual machine (VM) has been set up at our partner ENG

premises. This VM is available at the endpoint openreq.esl.eng.it and will host the

testing and stable environments (see the integration process description) of the OpenReq cloud

services.

It has been configured with a CentOs 7 operating system where http and https services are

enabled. At the moment a basic configuration has been set up to host webapps (Tomcat 8.5 +

MySQL Database) but the environment will be finalized once specific requirements from the

developers are defined.

From the point of view of the security of data, the VM is configured to have incremental daily

backups and monthly full backups.

Connection is secured and filtered using ENG corporate policies.

“Hello OpenReq” environment

This section describes the running “Hello OpenReq” prototype used to test the set-up of the

OpenReq Integration Infrastructure and to provide a basis for the OpenReq Iterative process. The

“Hello OpenReq” prototype has been released and its source code is available at the following

Git Repository: https://mast-tuleap.informatik.uni-hamburg.de/plugins/git/openreq/hello-

openreq.git.

To test the set-up of the Integration Environment provided by Engineering, the Jenkins tool has

been configured to pick-up the source code of the “Hello OpenReq” prototype available in the

Git repository and to build the project (i.e. a Maven project). The artefact generated after the build

https://mast-tuleap.informatik.uni-hamburg.de/plugins/git/openreq/hello-openreq.git
https://mast-tuleap.informatik.uni-hamburg.de/plugins/git/openreq/hello-openreq.git
https://mast-tuleap.informatik.uni-hamburg.de/plugins/git/openreq/hello-openreq.git

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 21 of 32

is a Spring Boot web application that can be run in the OpenReq VM hosted by Engineering. In

particular, the Jenkins tool has been configured to automatically deploy the generated artefact

(named openreq-1.0.jar) into the OpenReq VM and to execute it.

Therefore, once the build process is successful completed, the services provided by the “Hello

OpenReq” prototype are available at the following url http://openreq.esl.eng.it/openreq/.

https://openreq.esl.eng.it/openreq/

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 22 of 32

8. Documentation

The documentation of the OpenReq project includes deliverables, technical meetings agenda and

minutes, and other documents related to the research of the project. In the following, some

standards are defined for each type of document.

Deliverables

Deliverables are the most important type of document in the project. They represent the result of

the project work in the eyes of the European Commission, and their positive evaluation is a

requirement for the correct evolution of the project.

Deliverables must adhere to the deliverable template that will be made available in Tuleap. The

naming convention for a deliverable must be:

Dm.n - Name_vr.s

where Dm.n identifies the deliverable as declared in the DoA, then Name is the name of the

deliverable (which can be a short name if it is too long) and then vr.s represents the version (vr is

the major number and s the minor number), only in cases where the deliverable is updated during

the project. An example for this deliverable would be “D1.4 – Project standards and infrastructure

document”.

Some of the deliverables could be updated throughout the project. In case of these deliverables,

the major number of the version should be increased for each update. For example, D1.3 should

be submitted in M6 and updated over the course of the project whenever significant changes arise.

In this case, the first version delivered in M6 should be named as “D1.3 – Data Management

Plan”, and future delivered versions will be named as “D1.3 – Data Management Plan_v1.0”,

“D1.3 – Data Management Plan_v2.0”, etc. If there are some changes in between delivered

versions, the version minor number is the one to be increased. All the major versions will be

stored in Tuleap.

The workflow for the review process of deliverables is detailed in annexes A and B.

Technical meeting agenda and minutes

Technical meetings will be organised when needed to ensure the success of the project activities.

The chairperson of a Consortium Body shall produce written minutes of each meeting which shall

be the formal record of all decisions taken. S/he shall send the draft minutes to all Partners within

10 calendar days of the meeting. The minutes shall be considered as accepted if, within 5 calendar

days from sending them, no Partner has sent an objection in writing to the chairperson with

respect to the accuracy of the draft of the minutes.

Minutes will clearly identify Action Points with deadline and responsible. Also, the minutes will

include the list of attendees. Agenda and final minutes will be stored in Tuleap. Their naming

conventions are:

● For agenda: date-TechMeeting_Agenda, where date is the date in format yyyymmdd

(filling with ‘0’ for days or months lesser than 10). Preliminary versions of the agenda

will have suffix “_vm”.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 23 of 32

● For minutes: date-TechMeeting_Minutes. Preliminary versions of the minutes will

have suffix “_vm”. The list of disagreements of partners to preliminary versions of the

minutes will be stored in a file date-TechMeeting-AmendmentRequests_vm, with the

identification of the person that raised the amendment request and the quotation of that

request.

Other Documents

The rest of documents are recommended to be compliant to the following nomenclature:

Name - partner_vr.s

where Name is a significant name which provides information about the nature of the

document, partner is the name of the partner that created this version, and vr.s represents the

version. An example of valid name could be “Requirements Patterns SLR Protocol –

UPC_v1.2”. Please note that this convention will not be enforced. All the major versions of

the document will be stored in Tuleap.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 24 of 32

9. When to use which tool

For Development

The main tools for collaborative development used through the development process of the

OpenReq components are: i) a version control system (i.e., a Git server accessible via Tuleap), ii)

a continuous integration server (Jenkins) to execute tests and eventually merge the modifications,

iii) a bug tracking system (inside Tuleap) integrated with the current trackers available in Tuleap.

Usage:

i) When working on a component the developer will checkout the relative repository from the git

server (or update their local copy after someone else applied a modification), and apply his/her

own modification. The modification are then sent back to the server.

ii) Before the accepting the modification, the review server will show what has been modified. In

this occasion, other developers (i.e., not the one who authored the modification) will review the

code for quality issues and decide whether accept the modification or ask the authors to address

the issue.

iii) Once the modification are accepted, a set of regression testing will be run to check whether

or not the modification caused any other parts of the system to fail. This step is done automatically

by the continuous integration server, however, in case of failing manual action should be taken.

iv) When a issue or bug or missing feature is identified (e.g., after the previous steps) a ticket

should be opened on the tracker. The ticket will describe the issue (or request) the motivations

and the context. The request will be assigned to one developer who will address it (e.g., following

the same procedure above).

For Reporting

● Google Docs: a set of shared Google Documents is the main way for collaborating on

writing drafts of the reports. The responsible for the report creates and shares a link to

the document with the collaborators; this also facilitates internal revisions. Once a draft

is completed and revised, it is “freezed” in the Tuleap Document Management System

● Documents management system (Tuleap): Tuleap provides storage of files organized

in a hierarchy through folders and subfolders. Although the system supports basic

versioning functionalities, it makes collaboration cumbersome has a file needs to be

downloaded, edited and re-uploaded on the platform each time. A unique id is assigned

to each document so that it can be referenced throughout the system (e.g., in a tracker

item, a wiki page, or a code commit). The final version of the reports will be stored

here (see Annex C).

● Wiki (Tuleap): The wiki hosted on Tuleap are used for internal reports regarding

OpenReq that are likely to change (e.g., a wiki page describing the project members).

Wiki pages can be references throughout the Tuleap system by their id. However, a

relevant report will be in any case saved to the Document Management System.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 25 of 32

For Communication

● Mailing-Lists/Mail: In addition to traditional mail exchanges, one-to-many

communication will be made possible using mailing lists. The mailing lists are hosted

and managed through a MailMan instance integrated with Tuleap. For an overview of

the available mailing lists, their purpose and members see Annex C.

● Slack: the role of the Slack channel openreq.slack.com is to enable quick

communication and collaboration between the project members. However, this is not

the main communication channel.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 26 of 32

10. Evaluation of technical standards

This refers to recommenders, operating systems, programming languages and open source

components.

Responsible work package leaders are in charge of the evaluation of conformance to the technical

standards for the corresponding work package.

We will use and extend state of the art recommendation approaches (collaborative filtering,

content-based recommendation, group recommendation approaches).

Java version 6+ will be the main programming language (see section “Implementation and

Coding Standards”) and thus there are no further specifics about the underlying operating system.

For further details regarding the installed operating systems of the virtual machines please refer

to section Cloud services Infrastructure.

OpenReq uses the state of the art technology “Spring Boot Apps” (Running REST Services in the

backend), “Thymeleaf” (Presenting User interfaces for the end users) in combination with

“Bootstrap” (CSS styling framework) for the prototype which supports basic functionality of

OpenReq. In case the trial partners need different user interfaces those specific interfaces use the

REST services of OpenReq.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 27 of 32

Annex A. Workflow of deliverable review

Each and every deliverable in the OpenReq project will undergo through a review process.

Google Docs file will be used for the writing of the deliverables, as it allows to easily track

changes and comments. Given a deliverable with the following characteristics:

● to be delivered at a due date,

● managed by a lead beneficiary,

● produced by a task that starts at initial date,

the reviewing process consists of the workflow explained below.

PHASE I. Preparation – 1st month

Step 1. The lead beneficiary takes care of setting up the Google Docs space and the calendar for

the deliverable production in Tuleap. Deadline: One week after the initial date.

Step 2. The lead beneficiary representative communicates by email to the project coordinator

(PC), scientific manager (SM) and dissemination manager (DM), who is the person in

charge of this deliverable. This person will serve as contact point for the rest of the

deliverable production. Deadline: Two weeks after the initial date.

Step 3. The PC, previous consultation with the SM and DM, will select two reviewing partners

(different than the lead beneficiary) to take care of the review. He will notify this

decision to the representatives of such partners and to the person in charge. Deadline:

Three weeks after the initial date.

Step 4. The two reviewing partner representatives will nominate a project member from their

organizations as deliverable reviewers, and will communicate these names to the PC,

SM and DM. Deadline: One month after the initial date.

PHASE II. Writing – from the 2nd month to 1 month before the deadline

Step 5. The person in charge will e-mail a notification with a link to the Google Docs file to the

PC and deliverable reviewers for a first check (already using the project deliverable

template). Ideally, each section may contain a short (2-3 lines) description of the

intended contents. Deadline: Two months before the due date.

Step 6.The PC and the deliverable reviewers may provide quick and short feedback to this index.

Deadline: One week after Step 5.

Step 7. The person in charge will implement the feedback of the index and will e-mail a

notification containing a link to the Google Docs file to the people involved in the

production of the deliverable. Deadline: Two working days after Step 6.

Step 8. The person in charge will e-mail a notification containing a link to the Google Docs file

to the deliverable reviewers when there is available a complete first draft of the

deliverable. In the file, reviewers will track changes and provide comments. Deadline:

Four weeks before the due date.

PHASE III. Review – last four weeks

Step 9. The two deliverable reviewers will complete their review according to the instructions

given in Annex B. Once this is finished, the will notify the person in charge with copy

to the PC. Deadline: Two weeks before the due date.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 28 of 32

Step 10.The person in charge will analyse the deliverable reviewers’ comments. Significant

disagreements will be explicitly communicated to them and the PC. Deadline: One

working day after Step 8.

Step 11.The person in charge, and if needed together with the people involved in the production

of the deliverable, will implement the deliverable reviewers’ comments. In parallel,

any discussion on disagreements will be held and progressively solved. Deadline: One

week before the due date.

PHASE IV. Finalization – due date

Step 11.The lead partner will upload the final version of the deliverable in the participants’ portal

(in pdf) and also in Tuleap (in MS Word and pdf) with notification to the PC. Deadline:

The due date. See Note 5 below for additional information.

PHASE V. Evolution

Step 12. For subsequent versions of the deliverable, the person in charge and the two deliverable

reviewers will be kept unless causes of force majeure. Steps 5 to 11 will be repeated

for each such version.

Note 1: the appointment of reviewing partners (Step 3) will be proposed considering a fair

distribution of reviewing workload along the project lifetime and also promoting diversity in the

assignment of reviewing partners to deliverables produced by one partner.

Note 2: these instructions are separately available in Tuleap and updated with concrete reference

to appropriate names of spaces, folders and files. In Tuleap, it will be possible to find the details

of deliverables, including their concrete dates after applying the workflow steps and people

involved in their production and reviewing.

Note 3: for deliverables at M12 and M24, considering Xmas season, all dates will be moved one

week before the usual plan, so the deliverable is ready before Christmas.

Note 4: for deliverables produced by tasks started before the writing of this annex, Steps 1 to 4

redefined initial date by 1 month after Tuleap is ready.

Note 5: when a deliverable has several versions, after the second version (v1.0) is produced, the

file uploaded in the participants’ portal will be the pdf file of the last version. Instead, in Tuleap,

all the versions will be kept.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 29 of 32

Annex B. Deliverable review: instructions for reviewers

As per Annex A, every deliverable reviewer will receive from the person in charge a link to a

Google Doc file at two different moments:

● Two months before the deadline, an index of the deliverable.

● Four weeks before the deadline, a complete draft of the deliverable.

Feedback to the deliverable index

This feedback is optional and free format, by commenting and annotating the document submitted

by the person in charge. If no feedback is given in one week, it is assumed that the deliverable

reviewer agrees with the contents. This also applies to the PC, who also receives such an index.

Feedback to the deliverable draft

Roughly speaking, the draft review is expected to go along three directions:

1. Content. This is the most important part. Use comments in the Google Docs file for

small issues, but do not hesitate to attach an evaluation form to your review (free

format). Be practical and effective: remember that the proposed changes need to be

implemented in one week. One particular issue to check is the length of the deliverable:

although it is difficult to give a concrete number, short deliverables are preferred to

long ones. In case of need for details, we recommend to use annexes, so that the reading

of the main body does not get tedious.

2. Style. For typos and clear grammatical errors, directly modify the text using track of

changes in the Google Docs file. For suggestions, use again comments.

3. Formatting. Since the document gives an image of the project to the reviewers and

the outside (for public deliverables), it is important to pay attention to formatting

details. As reviewer, you need to check that the project deliverable template has been

strictly applied. Check also the first pages, which is a typical source of errors since

there is a lot of information. Ensure that the fixed parts (section 1, conclusions,

references, etc.) are kept. Double-check with the DoA: type of deliverable, deadlines

stated, names of deliverable, tasks and work packages, etc.

Note 1: very important, reviewers must always use track of changes when modifying the

submitted documents.

Note 2: reviewers are kindly invited to interact with the deliverable person in charge during the

review process to solve doubts, to sort out major issues or in general, speed up later processing

and ensure the deliverable quality. If agreed between both parts, staged reviews (e.g., by sections)

may be considered, again for the sake of speeding up the process.

Note 3: for Demonstrator deliverables, further instructions will be given in later versions of this

annex including specific questions to issues like installation instructions, user manual, licensing

information, etc.

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 30 of 32

ANNEX C - Tuleap

Mailing lists

The lists currently available are as follows (the mail address associated with each list is

listName@mast-tuleap.informatik.uni-hamburg.de)

List name Purpose

OpenReq-team For reaching everyone actively

involved in the project

OpenReq-devel For software development issues and

support activities. Can also include

external members, due to open

source, open call, students etc.

OpenReq-trials For coordination among the trial

partners

OpenReq-dissemination To notify about new publication

using the reporting sheet provided in

Tuleap

OpenReq-administration For legal, financial and progress

reporting data.

Documents

There are two different areas that can serve to store and access documents.

For final documents (e.g., documents that are not likely to change, please use the Documents

page.

The Documents structure looks as follows:

● DoA: for storing items specifically related to DoA tasks)

○ WPX: documents regarding the particular WP

■ Deliverables: Ad-hoc folder for storing only the deliverables required

by WPX with specific subfolders

● DX.Y: a folder for Deliverable X.Y where at least three

documents will be stored

○ the draft document to be sent to internal quality control

○ the internal quality control report

○ the final document to be submitted to the EC.

● Meetings: for storing meeting related docs (minutes, agenda, etc)

mailto:listName@mast-tuleap.informatik.uni-hamburg.de
mailto:listName@mast-tuleap.informatik.uni-hamburg.de

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 31 of 32

○ Year XXX: documents related to meeting taking place during year XXX

■ Board meetings: only for board meetings taking place in year XXX

■ Project review: only for project review meetings taking place in year

XXX

■ Interview (or any other kind of relevant meetings)

● Evergreens: basic documents that will be used over and over during the project

○ Presentations: slides (e.g., from KoM presentations) that can be reused (for

example during the interviews)

○ Templates: materials for needed when creating new

documents/brochure/presentations

D1.4 Project standards and infrastructure document

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 32 of 32

References

[1] Apache Maven, https://maven.apache.org/

[2] Gradle, https://gradle.org/

[3] Jenkins, https://jenkins.io/

[4] JMeter, http://jmeter.apache.org/

[5] Sonarqube, https://www.sonarqube.org/

[6] Docker, https://www.docker.com/

[7] JUnit, http://junit.org/junit4/

[8] Git, https://git-scm.com/

[9] Tuleap, https://www.tuleap.org/

[10] Gerrit, https://www.gerritcodereview.com/

[11] Swagger, http://swagger.io/

[12] Git branching policy,

https://wiki.eclipse.org/Scout/Contribution_Guidelines#Git_Branching_Policy

https://maven.apache.org/
https://gradle.org/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
http://jmeter.apache.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.docker.com/
http://junit.org/junit4/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://www.tuleap.org/
https://www.tuleap.org/
https://www.tuleap.org/
https://www.gerritcodereview.com/
https://www.gerritcodereview.com/
https://www.gerritcodereview.com/
http://swagger.io/
https://wiki.eclipse.org/Scout/Contribution_Guidelines
https://wiki.eclipse.org/Scout/Contribution_Guidelines

