

Project co-funded by the European Commission under the
H2020 Programme.

Grant Agreement nº 732463

Project Acronym: OpenReq

Project Title: Intelligent Recommendation Decision Technologies for

Community-Driven Requirements Engineering

Call identifier: H2020-ICT-2016-1

Instrument: RIA (Research and Innovation Action)

Topic ICT-10-16 Software Technologies

Start date of project January 1st, 2017

Duration 36 months

D2.2+Requirements Intelligence Engine version 1

Lead contractor: ENG

Author(s): ENG, HITEC

Submission date: July 2018

Dissemination level: PU

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 2 of 49

Abstract: This document describes the microservices that have been developed in the

OpenReq project in order to provide analytical services that will be used within the process in

order to classify, extract requirements and anomalies from tweets.

This document by the OpenReq project is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Unported License.

This document has been produced in the context of the OpenReq Project. The OpenReq project

is part of the European Community's h2020 Programme and is as such funded by the European

Commission. All information in this document is provided "as is" and no guarantee or warranty

is given that the information is fit for any particular purpose. The user thereof uses the

information at its sole risk and liability. For the avoidance of all doubts, the European

Commission has no liability is respect of this document, which is merely representing the authors

view.

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 3 of 49

TABLE OF CONTENTS

1. Introduction 5

2. Requirements Intelligence role in the architecture 6

3. Microservices 9

3.1. ri-collection-explicit-feedback-web 9

3.2. ri-analytics-classification-google-play-review 12

3.3. ri-collection-explicit-feedback-google-play-page 14

3.4. ri-collection-explicit-feedback-google-play-review 15

3.5. ri-collection-explicit-feedback-twitter 16

3.6. ri-orchestration-app 18

3.7. ri-orchestration-twitter 20

3.8. ri-storage-app 22

3.9. ri-storage-twitter 26

3.10. analytic-back-end-clean-text 29

3.11. analytic-back-end-compute-topics 30

3.12. analytic-back-end-do-som-and-plot 33

3.13. analytic-back-end-get-cell-frequency-distribution 34

3.14. analytic-back-end-get-codebook-activation 35

3.15. analytic-back-end-get-cost-of-som 36

3.16. analytic-back-end-get-embedded-words 37

3.17. analytic-back-end-get-umatrix 38

3.18. analytic-back-end-text-ranking 39

3.19. analytic-back-end-keywords-extraction 40

3.20. analytic-back-end-train-som 41

3.21. analytic-back-end-train-ngrams 42

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 4 of 49

3.22. analytic-back-end-train-codebook-cluster 43

3.23. analytic-back-end-train-word-to-vec 44

3.24. analytic-back-end-update-manager 45

4. Challenges and solutions 47

4.1. Twitter API limitation 47

4.2. Creation of a gold standard of Tweet messages 47

4.3. Collection of implicit feedback 48

5. Conclusion 49

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 5 of 49

1. Introduction

This document is structured into the following chapters:

1) Architecture: the architecture of the OpenReq project is described, with all its

components (Knowledge Ontology on which OpenReq is based, the REST services

made available by the platform and the various applications that use the Openreq

services);

2) The description of the microservices that have been developed to enrich the OpenReq

platform. For each microservice, a brief description of the microservice is given, a

sequence diagram that reports the interaction between the different components referred

to in the microservice and an example of the use of each microservice endpoint.

3) The problems encountered in the creation of microservices

We conclude by delineating further services and improvements to the existing ones.

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 6 of 49

2. Requirements Intelligence role in the architecture

The overall OpenReq architecture is composed of the OpenReq REST Services and the

different stakeholder applications who use the services (see Figure 2). Besides the trial partner

applications, the OpenReq Prototype (a showcase of major OpenReq functionalities) accesses

the different OpenReq services. The OpenReq Prototype includes basic OpenReq

functionalities offered to end users through an understandable and user-friendly user interface.

In all cases where end users interact with OpenReq functionalities, a special focus will be given

on usability.

Figure 1: OpenReq overall architecture.

The OpenReq Prototype and the industry trials exploit the basic functionalities provided by the

OpenReq services. Furthermore, services themselves exploit and integrate the services of other

components. For example, release planning uses functionalities of dependency detection,

recommendation, and group decision making (for simplicity, this is not considered in the

architecture figure). In the following, we give a short overview on the different services,

knowledge infrastructure, and interfaces shown in Figure 1 (for more details we refer to the

DoA).

a. Recommendation. The recommender engine will provide a set of basic microservices—e.g.,

querying for new requirements, responsible stakeholders, or reusable requirements. A

conversation with the system can be triggered depending on the type of the query and the

stakeholder activity. Generating recommendations will be delegated to collaborative or content-

based recommenders.

b. Dependency Management. This component uses a combination of content-based

recommendation, sentiment analysis, and natural language processing that support the detection

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 7 of 49

and extraction of requirements dependencies and requirements tracing. A conflict resolver is

used for repairing inconsistent requirements,

c. Group Decision. This component offers support for groups of users in group decision

processes. In a first step, the preferences of the different stakeholders have to be collected (for

example, regarding a specific requirement). After the preference acquisition is done, this

component also supports the moderation of the decision process in such a way that consensus

among stakeholders can be achieved in case of contradicting preferences.

d. Requirements Intelligence. This component will encapsulate an analytics backend and

include text-mining algorithms that allow the analysis of natural language in text-based

documents or user feedback (user feedback can be either explicit or implicit - see Figure 2). In

addition to that also interactive visualization will be supported by this component. In particular,

interactive visualization supports stakeholders in visualizing descriptive and predictive

analytics data. An example of such a visualization is shown in Figure 3. Figure presents the

trend of different app review types (e.g., a user requests a new feature or a bug to be fixed) over

time, for a specific app and over its different versions.

Figure 2: Example for explicit and implicit feedback

Figure 3: Example trend of different app review types

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 8 of 49

e. Knowledge Infrastructure. This component is responsible for managing OpenReq

ontologies, glossaries, indexes (e.g., references), stakeholder profiles, user feedback and usage

and interaction logs. OpenReq Ontologies will be (1) the RE ontology (language for modelling

requirements including concrete instances, i.e., the requirements model), (2) the reuse and

patterns ontology (language for requirements reuse and patterns), and (3) different domain

ontologies (modelling the domains of the applications, e.g. the trials). The OpenReq reuse and

pattern catalogue provides a reusable knowledge base about requirements. The catalogue will

be organized according to one or more classification schemas that will be derived from some of

the ontologies mentioned above. Communication among OpenReq components and the

integration of OpenReq components with the trial clients (e.g., the Siemens Doors client) will

be supported by OpenReq Interfaces. The approach to provide these interfaces will be the

following.

f. OpenReq Interfaces. The OpenReq Interfaces will provide open, unified interfaces for easily

integrating OpenReq into external tools in form of connectors (see Figure 1). Examples for

high-level interfaces include among others (a) Register/Unregister for Recommendation, (b)

push context, (c) display recommendation, (d) open artefact and (e) configure. As a proof of

concept, we will integrate these interfaces in the tools used by the OpenReq industry partners

and Open Source communities within the scope of the trial implementations. To assure the

accessibility of OpenReq in Cloud contexts, OpenReq will be built upon the following service

infrastructure.

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 9 of 49

3. Microservices

In this section, we describe each microservice, report their interaction in a sequence

diagram, and show usage examples.

3.1. ri-collection-explicit-feedback-web

This microservice collects implicit feedback from user interactions with OpenReq user

interfaces and user/microservice interactions with the backend.

The UI interactions are captured by a Javascript library that only needs to be imported

by the UI. No integration within the UI code (except <script src=“<url>“></script>)

is needed. The events in the UI are logged through this microservice API and stored in a

text file or database. The logs are accessible through this microservices API.

The backend interaction is captured by the web server software application, such as

Apache HTTP Server, not part of the microservice. Every request and response from

OpenReq microservices that reaches the backend is logged in a file. The log file is

accessible through this microservices API but limited in its accessibility by the owners

of a bearer token - currently the admins of the system.

Sequence diagram

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 10 of 49

Example usage

URL https://openreq.esl.eng.it/eng/hitec/fe/log

Method POST

URL params None

Header {"sessionId": "<sessionId>"}

Data params {
 "_id" : ObjectId("5b17ec2b2fd3113325b5a7d7"),
 "ip" : "127.0.0.1",
 "event_type" : "mouseover",
 "header" : {
 "Host" : "0.0.0.0:9798",
 "Connection" : "keep-alive",
 "Content-Length" : "26329",
 "Pragma" : "no-cache",
 "Cache-Control" : "no-cache",
 "Sessionid" : "hsuPP5K47wmO9QgXNhtN",
 "Origin" : "http://localhost",

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 11 of 49

 "User-Agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181
Safari/537.36",
 "Content-Type" : "application/json",
 "Accept" : "*/*",
 "Dnt" : "1",
 "Referer" : "http://localhost/rome-demo/index.html",
 "Accept-Encoding" : "gzip, deflate",
 "Accept-Language" : "en-
US,en;q=0.9,fr;q=0.8,de;q=0.7,es;q=0.6,it;q=0.5,ru;q=0.4,ro;q=0.3"
 },
 "body" : {
 "type" : "mouseover",
 …<more items>
 }
}

URL https://openreq.esl.eng.it/eng/hitec/js/logger

Method GET

URL params none

Header none

Data params none

URL https://openreq.esl.eng.it/eng/hitec/be/log

Method GET

URL params none

Header {"Authorization": "Bearer <bearer-token>"}

Data params none

URL https://openreq.esl.eng.it/eng/hitec/

Method GET

URL params none

Header {"Authorization": "Bearer <bearer-token>"}

Data params none

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 12 of 49

3.2. ri-analytics-classification-google-play-review

The goal of this microservice is to classify a list of app reviews as either a “bug report” or a “feature request”. The source code

to get classified reviews (including data cleaning, machine learning feature extraction, and classification based on pre-trained

models code that is necessary to perform these tasks is bundled in a single Docker container. The response of the microservice

is a list of app reviews that now includes the class they belong to.

Sequence diagram

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 13 of 49

Example usage

URL https://openreq.esl.eng.it/eng/hitec/classify/domain/google-play-
reviews/

Method POST

URL params None

Data params [
{

“review_id”: "05df34353efd",
"package_name":”com.myapp”,
"author":”johndoe”,
 "date_posted":20180524,
“rating”:5,
“title”: “I like this app because…”,
“body”: “it has really nice features”,
“perma_link”: “https://….”,
“cluster_is_feature_request”: false,
“cluster_is_problem_report”: true

},
]

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 14 of 49

3.3. ri-collection-explicit-feedback-google-play-page

The goal of this microservice is to collect all available metadata of an app page from the

Google Play Store—such as the name of the app, the category, and the average rating.

The response contains all information with respect to that app page in JSON format.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/hitec/crawl/app-page/google-
play/{package_name}

Method GET

URL params Package_name: the package name of the app page to crawl

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 15 of 49

3.4. ri-collection-explicit-feedback-google-play-review

The goal of this microservice is to collect data from the Google Play Store—the official

store for Android apps. In particular, this service collects the user reviews of a given

app. The response contains a list of app reviews belonging to a certain app in JSON

format.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/hitec/crawl/app-reviews/google-
play/{package_name}/limit/{limit}

Method GET

URL params package_name : the name of the App of which we crawl the reviews,
limit: the maximum number of reviews to retrieve

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 16 of 49

3.5. ri-collection-explicit-feedback-twitter

The goal of this microservice is to collect data from Twitter. In particular, this service

collects tweets that mention a given account. The response contains a list of tweets in

JSON format.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/hitec/crawl/tweets/mention/{account_na
me}/lang/{lang}

Method GET

URL params account_name : the name of the Twitter profile to crawl,
lang: the language the tweets should be written in

Data params None

URL https://openreq.esl.eng.it/eng/hitec/crawl/tweets/mention/{account_na
me}/from/{date}/lang/{lang}

Method GET

URL params account_name : the name of the Twitter profile to crawl,
date: specify the date from which the crawler starts,

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 17 of 49

lang: the language the tweets should be written in

Data params None

URL https://openreq.esl.eng.it/eng/hitec/crawl/tweets/mention/{account_na
me}/history-in-days/{days}/lang/{lang}

Method GET

URL params account_name : the name of the Twitter profile to crawl,
days: the days we want to crawl, counting backwards from current date,
lang: the language the tweets should be written in

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 18 of 49

3.6. ri-orchestration-app

This microservice is responsible to coordinate all microservices that belong to the domain of app store data. The main goal of

this microservice is to define apps that should continuously be observed by OpenReq. In a given interval, the apps and their

reviews are crawled, classified, and stored in the database.

Sequence diagram

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 19 of 49

Example usage

URL https://openreq.esl.eng.it/eng/hitec/orchestration/app/process/google-
play/package-name/{package_name}

Method POST

URL params package_name : the package name of the app to observe

Data params None

URL https://openreq.esl.eng.it/eng/hitec/orchestration/app/observe/google-
play/package-name/{package_name}/interval/{interval}

Method POST

URL params package_name: the package name of the app to observe,
interval: how often data should be crawled

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 20 of 49

3.7. ri-orchestration-twitter

This microservice is responsible to coordinate all microservices that belong to the domain of Twitter data. The main goal of

this microservice is to define Twitter accounts that should continuously be observed. In its current state, the microservice

crawls tweets that mention a given account and stores the result in the database.

Sequence diagram

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 21 of 49

Example usage

URL https://openreq.esl.eng.it/eng/hitec/orchestration/twitter/observe/tweet/
account/{account_name}/interval/{interval}/lang/{lang}

Method POST

URL params account_name : the name of the Twitter profile to observe,
lang: the language the tweets should be written in

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 22 of 49

3.8. ri-storage-app

This microservice is the interface to the actual database. It persists JSON objects.

Sequence diagram

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 23 of 49

Example usage

URL https://openreq.esl.eng.it/eng/hitec/repository/app/store/app-
review/google-play/

Method POST

URL params None

Data params {
“review_id”: "05df34353efd",
"package_name":”com.myapp”,
"author":”johndoe”,
"date_posted":20180524,
“rating”:5,
“title”: “I like this app because…”,
“body”: “it has really nice features”,
“perma_link”: “https://….”,
“cluster_is_feature_request”: false,
“cluster_is_problem_report”: true

}

URL https://openreq.esl.eng.it/eng/hitec/repository/app/observe/app/google-
play/package-name/{package_name}/interval{interval}

Method POST

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 24 of 49

URL params package_name: package name of the app we want to observe,
Interval: specifies how often we want to observe it, e.g., daily

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/non-existing/app-
review/google-play/

Method POST

URL params None

Data params [
 {

“review_id”: "05df34353efd",
"package_name":”com.myapp”,
"author":”johndoe”,
"date_posted":20180524,
“rating”:5,
“title”: “I like this app because…”,
“body”: “it has really nice features”,
“perma_link”: “https://….”,
“cluster_is_feature_request”: false,
“cluster_is_problem_report”: true

 }
]

URL https://openreq.esl.eng.it/eng/hitec/repository/app/unprocessed/app-
review/google-play/package-name/{package_name}/limit/{limit}

Method GET

URL params package_name: package name of the app we want to get data,
limit: how many app reviews we want to receive

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/observable/google-play

Method GET

URL params None

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/bug-report/google-
play/package-name/{package_name}

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 25 of 49

Method GET

URL params package_name: package name of the app we want to get data

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/feature-
request/google-play/package-name/{package_name}

Method GET

URL params package_name: package name of the app we want to get data

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/app-page/google-
play/package-name/{package_name}/is-recent

Method GET

URL params package_name: package name of the app we want to get data

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/app-review/google-
play/package-name/{package_name}/is-recent"

Method GET

URL params package_name: package name of the app we want to get data

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/app/bug-reports/google-
play/package-name/{package_name}/is-recent

Method GET

URL params package_name: package name of the app we want to get data

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 26 of 49

3.9. ri-storage-twitter

This microservice is the interface to the actual database. It persists all JSON objects that

are related to Twitter.

Sequence diagram

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 27 of 49

Example usage

URL https://openreq.esl.eng.it/eng/hitec/repository/twitter/store/tweet/

Method POST

URL params None

Data params {
"created_at": 20180524,
"favorite_count":0,
"retweet_count":2,
"full_text": “this is my tweets”,
"status_id": “124323156”,
"user_name": “janedoe”,
"in_reply_to_screen_name": “johndoe”,
"lang": “en”,
"tweet_class": “problem_report”

}

URL https://openreq.esl.eng.it/eng/hitec/repository/twitter/store/observable/

Method POST

URL params None

Data params {
"account_name": “my whatsapp name”,

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 28 of 49

"interval":”daily,
"Lang":”en”

}

URL https://openreq.esl.eng.it/hitec/repository/twitter/account_name/{account_
name}/class/{tweet_class}

Method GET

URL params account_name: the account name of a twitter profile,
tweet_class: e.g., problem_report

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/twitter/account_name/{acco
unt_name}/all

Method GET

URL params account_name: the account name of a twitter profile

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/twitter/account_name/all

Method GET

URL params None

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/twitter/reset/tweet

Method GET

URL params None

Data params None

URL https://openreq.esl.eng.it/eng/hitec/repository/twitter/observables

Method GET

URL params None

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 29 of 49

3.10. analytic-back-end-clean-text

This microservice cleans text. It takes as input a list of tweet messages and returns the

same list cleaned—it removes special characters, punctuation signs, HTML tags,

@username, stopwords and URLs. You can see Swagger documentation at /apidocs.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/cleanText

Method POST

URL params None

Data params [{"message":"Posso essere chiamato da un operatore 3"}, {"message":"Ci
sono appena andato a un negozio e o faccio una promozione o niente!
Voglio pagare quando chiamo e non vo https: / /t.co /lhRqzJPfpT"}]

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 30 of 49

3.11. analytic-back-end-compute-topics

This microservice extracts topics from a list of tweets. It takes as input the id of the

models. For example word2vec for creating a vector representation of text, clustering

and self-organizing maps to aggregate tweets messages, and the messages that should be

examined. It returns a graph for each topic found.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/computeTopics

Method POST

URL params None

Data params {"w2v_model_id":12345,
"Som_model_id":67890,
"codebook_cluster_model_id":24680,
 "tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}]

Response
example

[
 {
 "directed": false,
 "graph": {},
 "links": [
 {
 "source": 0,
 "target": 1
 },
 {

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 31 of 49

 "source": 0,
 "target": 4
 },
 {
 "source": 0,
 "target": 7
 }
],
 "multigraph": false,
 "nodes": [
 {
 "id": 0,
 "name": "offerta",
 "pos": [
 0.39845688850044275,
 0.01701041209436488
]
 },
 {
 "id": 1,
 "name": "promozione",
 "pos": [
 0.5467295096202749,
 -0.18447308286329653
]
 },
 {
 "id": 4,
 "name": "numero",
 "pos": [
 0.7412007341069454,
 0.06619163623027753
]
 },
 {
 "id": 7,
 "name": "abbonamento",
 "pos": [
 -0.007811836655060454,
 0.12406653407660848
]
 }
]
 },
 {
 "directed": false,
 "graph": {},
 "links": [
 {
 "source": 0,

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 32 of 49

 "target": 1
 },
 {
 "source": 0,
 "target": 2
 },
 {
 "source": 0,
 "target": 11
 }
],
 "multigraph": false,
 "nodes": [
 {
 "id": 0,
 "name": "wind",
 "pos": [
 0.1025021960790923,
 -0.00583486483102523
]
 },
 {
 "id": 1,
 "name": "operatore",
 "pos": [
 -0.2125952797941764,
 0.19447134425055665
]
 },
 {
 "id": 2,
 "name": "telefono",
 "pos": [
 -0.07288693121191979,
 -0.23931113221735195
]
 },
 {
 "id": 11,
 "name": "posso",
 "pos": [
 0.4806237910010984,
 -0.02734068831978047
]
 }
]
 }
]

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 33 of 49

3.12. analytic-back-end-do-som-and-plot

This microservice is useful to apply the Self Organizing Map (SOM) model (i.e., an

artificial neural network (ANN) which produces a low-dimensional, discretized

representation of the input space of the training samples, called a map) on a set of tweets

and return a graph with Minimum Spanning Tree applied on the SOM codebooks. It

takes as input the type of the chart: “d3” or “json”; the ids of the models, word2vec and

SOM, and the list of the tweets or the URL of the CSV file (header ”messages”)

containing the tweet messages.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/doSomAndPlot

Method POST

URL params None

Data params {“type_chart”: "d3/json",
"w2v_model_id":12345,
"Som_model_id":67890,
"url_input":"http://www.someurl.csv",
 "tweets":[{"messaggio":"Posso essere chiamato da un operatore 3"},
{"messaggio":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}]

https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Self-organizing_map
http://www.someurl.csv/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 34 of 49

3.13. analytic-back-end-get-cell-frequency-distribution

This microservice shows the frequency of each cell of the SOM. It takes as input the

type of chart, the ids of the models (word2vec and SOM), the maximum number of

cells, and the tweet messages or the URL of the CSV (header ”messages”) containing

the tweet messages. It returns the HTML containing the graph.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/getCellFrequencyDistribution

Method POST

URL params None

Data params {“type_chart”: "bubble/bar",
"w2v_model_id":12345,
"Som_model_id":67890,

"Num":30,

"url_input":"http://www.someurl.csv"
 "tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}]

http://www.someurl.csv/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 35 of 49

3.14. analytic-back-end-get-codebook-activation

This microservice shows the number of activations of codebooks during the SOM

training. It takes as input the id of the SOM model and returns an image.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/getCodebookActivation

Method GET

URL params som_model_id

Data params None

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 36 of 49

3.15. analytic-back-end-get-cost-of-som

This microservice shows the costs of the trained SOM. It takes as input the id of the

SOM and returns the cost of the trained model.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/getCostOfSom

Method POST

URL params None

Data params {"som_model_id":67890}

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 37 of 49

3.16. analytic-back-end-get-embedded-words

This microservice is useful to apply the word2vec model (a vector based model to

represent text) to the tweets in input.

The microservice takes as input the id of the model word2vec and the tweet messages

that we want to embed and return the n dimensional vectors, in this case the dimensions

are 100. As result each word of the message is converted into a 100 dimensional vector.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/getEmbeddedWords

Method POST

URL params None

Data params {"w2v_model_id":12345,
 "tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}]

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 38 of 49

3.17. analytic-back-end-get-umatrix

This microservice calculates the umatrix (i.e., a visual representation of a SOM) of a

specific trained SOM.

The microservice takes as in input the id of the SOM model and returns the image of the

Umatrix.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/getUmatrix

Method POST

URL params None

Data params {"som_model_id":67890}

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 39 of 49

3.18. analytic-back-end-text-ranking

This microservice performs text ranking on a set of tweets. It takes as input a list of

tweets or a CSV (header ”messages”) with the tweets and the id of the word2vec and

bigram models . It returns lists of words that represent topics.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/textRanking

Method POST

URL params None

Data params {"url_input":"http://www.someurl.csv",
"tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}],
"w2v_model_id":12345,
“bigram_model_id”,: 24680,

http://www.someurl.csv/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 40 of 49

3.19. analytic-back-end-keywords-extraction

This microservice extracts keywords from a text. It takes as in input the list of tweet

messages or the URL of a CSV file (header ”messages”) containing a list of tweet

messages and the id of the bigram model previously trained calling the API trainNgram.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/keywordsExtraction

Method POST

URL params None

Data params {"url_input":"http://www.someurl.csv",
"tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}],
"bigram_model_id":123456}

http://www.someurl.csv/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 41 of 49

3.20. analytic-back-end-train-som

This microservice trains a SOM. The microservice takes as input the id of the word2vec

model previously trained calling the API trainWord2vec and returns the id of the trained

model.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/trainSom

Method POST

URL params None

Data params {"w2v_model_id":123456}

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 42 of 49

3.21. analytic-back-end-train-ngrams

This microservice trains the bigram needed to extract keywords from tweet messages. It

takes as input the URL of the CSV file (header “messages”) with the tweet messages or

a list of tweets messages and returns an id of the trained model.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/trainNgrams

Method POST

URL params None

Data params {"url_input":"http://www.someurl.csv",
 "tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}]}

http://www.someurl.csv/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 43 of 49

3.22. analytic-back-end-train-codebook-cluster

This microservice trains the clustering model applied on the codebooks of the SOM, this

is the model used to extract the topics from the tweet messages and given as parameter

to the API computeTopics. It takes as input the id of the SOM and returns the id of the

trained model.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/trainCodebookCluster

Method POST

URL params None

Data params {"som_model_id":123456}

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 44 of 49

3.23. analytic-back-end-train-word-to-vec

This microservice trains a Word2vec model. It takes as input an URL of the CSV file

(header ”messages”) containing the tweet messages or the list of tweet messages and

returns the id of the trained model.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/trainWord2vec

Method POST

URL params None

Data params {"url_input":"http://www.someurl.csv",
"tweets":[{"message":"Posso essere chiamato da un operatore 3"},
{"message":"Ci sono appena andato a un negozio e o faccio una
promozione o niente! Voglio pagare quando chiamo e non vo "}]}

http://www.someurl.csv/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 45 of 49

3.24. analytic-back-end-update-manager

This microservice auto-updates other microservices. It takes as input a policy containing

rules. Rules can be time- or time- and volume-dependent (e.g., based on the amount of

new training examples available). When a rule is matched, the microservice requests a

training microservice and, if required, updates the model.

Sequence diagram

Example usage

URL https://openreq.esl.eng.it/eng/openReq/updateManager/registration

Method POST

URL params None

Data params Policy: {
 "addressNewData": "dataManager/getNewData",
 "addressTraining": "trainingService/getTraining",
 "addressUpdate": "updateService/putNewModel",
 "ownerId": "eng",
 "policyId": "service001",
 "rules": [

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 46 of 49

 {
 "period": 6,
 "timeUnit": "HOURS",
 "startDateTime": "2018-05-24T00:00:00+02:00[Europe/Rome]",
 "volume": 1000
 }
 {
 "period": 1,
 "timeUnit": "DAYS",
 "startDateTime": "2018-05-24T00:00:00+02:00[Europe/Rome]",
 }
]
}

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 47 of 49

4. Challenges and solutions

In this section, we describe the challenges we encountered and the solutions selected during the

development and testing phase of the microservices presented in Section 3.

4.1. Twitter API limitation

Challenges: We crawl data from Twitter using the official API which is limited by a

specific number of requests in a certain time window1. Further, the API comes in

different access levels and pricing: standard, premium, and enterprise—each of them

allowing different search options, such as crawling data of the last seven days, 30 days,

or the full archive2. As we cannot provide paid Twitter search API tokens to the public,

we are limited to the standard search API. In future versions of the microservice, we

will add the possibility add a custom API access tokens to allow premium and enterprise

searches.

Solutions: We mitigate the API limit by enabling our microservices to crawl data in

intervals (e.g., on a daily basis). Although we cannot go back in time, we are able to

gather all recent data from the point in time in which the crawler is configured. In

addition, we consider the API rate limit and pause the crawler in case it gets blocked;

this solution allows us to have a continuous crawling process.

4.2. Creation of a gold standard of Tweet messages

Challenges: The creation of a gold standard of tweet messages (i.e., messages annotated

with their correct class) used for classifying them as, for example, problem report or

irrelevant is challenging because of the vast number of messages available. There is a

trade-off between creating a representative sample (not domain-specific) and focusing

on a specific domain.

Moreover, the gold standard is created through human annotations. This results in

several challenges such as getting data annotated in the first place and having high-

quality annotation (i.e., correct annotation).

Solutions: To address the challenge of getting annotated data, we employed crowed

source annotation using the platform figure eight (formerly CrowdFlower)3. On this

platform, people can annotate data for monetary compensation. Using such platform can

lead to incorrectly annotated data due to the inexperience of the platform users. First, we

mitigate this threat by providing written, peer-reviewed, and validated annotation

guidelines explaining how to perform the annotation task, including several examples.

Second, we asked questions to check if the crowd understood the annotation guide, and

discarded annotators who did not. Third, each message is annotated by at least two

persons, if they do not agree on the annotation it will be shown to a third person. We

only consider messages having an agreement by at least two persons.

1 https://developer.twitter.com/en/docs/basics/rate-limiting.html
2 https://developer.twitter.com/en/pricing.html
3 https://www.figure-eight.com/

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 48 of 49

4.3. Collection of implicit feedback

Backend Logging
Challenges: Logging microservice interactions, including those without human

intervention, requires each microservice to implement an additional logging call to each

microservice. The effort can possibly exceed the possibilities microservice maintainers,

in particular when third parties want to extend OpenReq with additional microservices.

Solutions: The backend logging will be implemented within the webserver application

(i.e., Apache HTTP Server) that dispatches the calls to all microservices hosted on the

OpenReq infrastructure. By implementing the logger as an Apache module, we can

capture all requests and responses without any effort by the microservice maintainers.

Frontend Logging
Challenges: The frontend interactions are logged by a custom library. The main

challenges are compatibility, distribution, and reduction of the integration effort.

Solutions: To address the challenge of the compatibility, the logging library is

implemented in Vanilla JavaScript and thus has no dependencies on other libraries. The

library is distributed from within the logging microservice itself and therefore always

available and up=to-date. The integration of the library only to import the script within

the HTML.

D2.2 Requirements Intelligence Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 49 of 49

5. Conclusion

In this document we positioned the Requirement Intelligence Engine and its services in the

overall OpenReq architecture. Moreover, we defined each microservice behavior, interaction,

and usage. Finally, we delineated the challenges we faced and how we addressed them.

For version 2 of the Requirements Intelligence Engine, we will improve the efficiency of the

existing services. To that end, we will i) use the interaction information collected by the

microservices, ii) devise new policies for the update manager component based on the

experience and feedback gathered during the trials.

Based on the interviews with the case companies (see D1.2), we consider adapting the existing

microservices to other similar sources of relevant data for requirements engineering, such as

customers’ tickets and developers’ issues.

