

Project co-funded by the European Commission under the
H2020 Programme.

Grant Agreement nº 732463

Project Acronym: OpenReq

Project Title:
Intelligent Recommendation Decision Technologies for

Community-Driven Requirements Engineering

Call identifier: H2020-ICT-2016-1

Instrument: RIA (Research and Innovation Action

Topic ICT-10-16 Software Technologies

Start date of project January 1st, 2017

Duration 36 months

D3.1 OpenReq Approach for Stakeholders’ Recommendations

Lead contractor:

UPC

Author(s): HITEC, TUGraz, UPC

Submission date: December 2017

Dissemination level: PU

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 2 of 53

Abstract: This deliverable presents a description of the state-of-the-art in recommender

systems, both from a scientific and practical point of view. Moving from this state-of-the-art,
the deliverable also states the requirements for the stakeholders’ recommendations in OpenReq.

Specifically, it defines the different stakeholders’ recommendations tasks that have been

identified (stating for each one of them the requirements artifacts that are involved), the

technical approach and algorithms used to implement the recommendation tasks, and the

general architecture of the stakeholders’ recommendations in OpenReq. Some of the initial

results are summarized that will be refined later over the course of the project. The results

include the surveys of recommender systems and requirements quality improvement, and the

architecture and data model to be used.

This document by the OpenReq project is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Unported License.

This document has been produced in the context of the OpenReq Project. The OpenReq project

is part of the European Community's h2020 Programme and is as such funded by the European

Commission. All information in this document is provided "as is" and no guarantee or

warranty is given that the information is fit for any particular purpose. The user thereof uses

the information at its sole risk and liability. For the avoidance of all doubts, the European

Commission has no liability is respect of this document, which is merely representing the

authors view.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 3 of 53

Table of Contents

1 INTRODUCTION .. 7

1.1 Motivation .. 7

1.2 Glossary of terms .. 7

1.3 Intended audience ... 7

1.4 Relation to other deliverables .. 8

1.5 Scope .. 8

1.6 Document structure .. 8

2 STATE-OF-THE-ART .. 9

2.1 Recommender systems .. 9

2.1.1 Collaborative filtering (CF) recommendation approaches 10

2.1.2 Content-based filtering (CBF) recommendation approaches 12

2.1.3 Knowledge-based (KB) recommendation approaches 14

2.1.4 Hybrid recommendation system (HRS) approaches 16

2.1.5 Other types of recommender approaches 18

2.1.5.1 Text mining ... 18

2.1.5.2 Clustering ... 19

2.1.5.3 Classification ... 19

2.1.6 Context-awareness in recommender systems 20

2.2 Improvements of requirements quality 22

2.2.1 Unambiguity .. 22

2.2.2 Conformance to templates .. 27

2.2.3 Completeness ... 27

2.2.4 Stakeholder engagement .. 28

2.2.5 Others ... 29

3 PERSONAL STAKEHOLDERS’ RECOMMENDER

ENGINE ... 31

3.1 Recommendation tasks .. 31

3.2 Approach, algorithms, evaluation and technologies 33

3.2.1 Approach and algorithms ... 33

3.2.2 Evaluation ... 36

3.2.3 Technologies ... 37

3.2.3.1 Technologies for recommender systems .. 38

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 4 of 53

3.2.3.2 Technologies for classification and clustering ... 38

3.2.3.3 Technologies for NLP ... 39

3.2.3.4 Technologies for context-awareness ... 40

3.2.3.5 Technologies summary ... 40

3.3 Architecture ... 41

3.3.1 Context of the stakeholders’ recommender engine 41

3.3.2 Architecture overview of the stakeholders’ recommender engine .. 42

3.3.2.1 Recommendation layer ... 42

3.3.2.2 Data layer ... 43

4 SUMMARY .. 46

5 REFERENCES ... 47

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 5 of 53

List of Figures
Figure 1. Recommender systems classification .. 9

Figure 2. Requirements quality improvements targets ... 23

Figure 3. Personal recommendations in OpenReq overview .. 31

Figure 4. Algorithms for personal recommendations in OpenReq ... 34

Figure 5. Context of the stakeholders’ recommender engine ... 41

Figure 6. Architecture overview of the stakeholders’ recommender engine 42

Figure 7. Data entity relationship model of the Data layer ... 44

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 6 of 53

List of Tables
Table 1. List of terms used in the document ... 7

Table 2. Improvements of requirements quality: state-of-the-art summary 23

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 7 of 53

1 INTRODUCTION

One of the stated objectives of the OpenReq project is to design an approach for assisting

individual stakeholders in different requirements-related tasks such as defining, reusing,

screening, understanding, evaluating, and quality assurance. To achieve that, the first actions

covered in this document are:

● To carry out a state-of-the-art in recommender systems, both from a scientific and

practical point of view.

● To identify the stakeholders’ recommendations tasks and their related requirement

artifacts.

● To define the technical approach and algorithms used to implement the

recommendation tasks.

● To define the general architecture of the stakeholders’ recommendations in OpenReq.

To this end, in this deliverable we show the current state of these four actions.

1.1 Motivation

During the formulation of the proposal, we stated the need for having recommendations that

help stakeholders, as individuals, during the requirements engineering process. These

recommendations are related to the screening and recommendation of relevant requirements,

to the improvement of requirements quality, to the prediction of requirements properties, and

to the identification of relevant stakeholders. In this deliverable, we further analyse and explain

the design of the stakeholders’ recommendations approach required to cover the expectations

of the OpenReq project and its intended platform.

1.2 Glossary of terms

The following table presents the most used terms in the document.

Table 1. List of terms used in the document

Term Description

CARS Context-Aware Recommender System (as a type of recommender system)

CF Collaborative Filtering (as a type of recommender system)

CBF Content-Based Filtering (as a type of recommender system)

HRS Hybrid Recommender System (as a type of recommender system)

KB Knowledge-Based (as a type of recommender system)

ML Machine Learning

RE Requirements Engineering

RS Recommender System

SR Social Recommender (as a type of recommender system)

1.3 Intended audience

The content of this document is of special interest for the OpenReq consortium, because it

defines stakeholders’ recommender engine that is one of the four aspects covered on the

OpenReq project. We also plan to disseminate parts of this work to the research community,

especially the systematic mappings done for the literature reviews about recommender systems

and requirement quality improvements.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 8 of 53

1.4 Relation to other deliverables

This deliverable is greatly related to other deliverables of the project, mainly with:

● D2.1, which presents the OpenReq approach for analytics and requirements

intelligence;

● D4.1, which presents the OpenReq approach for group decision support; and

● D5.1, which presents the OpenReq approach for requirements knowledge and

dependency management.

1.5 Scope

This deliverable will evolve as the project and work package activities progress and more

consolidated versions of the design are in place, especially for those tasks that have not yet

started (T3.4, T3.5 and T3.6). Here, we explain in detail the stakeholder requirements

recommendations strategy for OpenReq and the current status of its design.

1.6 Document structure

Section 1 introduces the deliverable following the OpenReq deliverable template. Section 2

presents the state-of-the-art in recommender systems and requirements quality improvement.

Section 3 describes the different stakeholders’ recommendations tasks that have been

identified, the technical approach and algorithms used to implement the recommendation

tasks, and the general architecture of the stakeholders’ recommendations in OpenReq. Section

4 presents a conclusion of the work reported in this deliverable.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 9 of 53

2 STATE-OF-THE-ART

This section summarizes the state-of-the-art related to OpenReq personal recommendations

for stakeholders. We summarize the topic of recommender systems (subsection 2.1) and the

topic of requirement quality improvement (subsection 2.2) since they are relevant for the work

done in OpenReq personal recommendations for stakeholders and could inspire the whole

approach. Finally, some conclusions of the state-of-the-art and practice are presented

(subsection 2.3).

2.1 Recommender systems

Recommender Systems (RS) support users in finding items of interest. The major goal of this

subsection is to present the basic properties of the three major recommendation approaches:

collaborative filtering (subsection 2.1.1), content-based filtering (subsection 2.1.2) and

knowledge-based (subsection 2.1.3). Thereafter, we describe the properties of hybrid

recommendation approaches which combine some of the basic variants listed above

(subsection 2.1.4), and a summary of other techniques that are being used in recommendation

systems (subsection 2.1.5). In addition to introducing the recommendation approaches,

subsection 2.1.6 also includes a summary of how recommendation systems deal with context-

awareness. Figure 1 summarizes this different approaches to recommender systems that will

be explored in this subsection.

Figure 1. Recommender systems classification

Apart from the main properties of these recommendation techniques, these subsections also

include the most relevant approaches for developing the personal recommendations for

stakeholders in OpenReq. These approaches have been found doing a systematic mapping

following a snowballing process which used as seed the work of Jannach (2010). As stated

before, we only plan to cite here the most relevant approaches for the development of

OpenReq. The full snowballing results (which include more than 90 papers) are aimed to be

included in a publication. Therefore, we will not mention in this section some works identified

about the application of RS in practice (e.g., Netflix in (Meuth 2008) and (Bell 2009), and

Amazon in (Linden 2003)) since:

1. The recommendations of these RS are quite different from the ones to be done in

OpenReq; and

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 10 of 53

2. As these RS are usually trade-market secrets, the few publications found probably only

explain just a small part of the RS used in these commercial systems.

2.1.1 Collaborative filtering (CF) recommendation approaches

Collaborative filtering (CF) is a recommendation technique that bases its predictions and

recommendations on the past ratings or behavior of other system users (Ekstrand 2011). The

assumptions behind this technique are (Bernardes 2015): first, if users agree about the quality

or relevance of some items, then they will likely agree about other items; and second, users’

preferences remain stable and consistent over time. The majority of CF algorithms operate by

first generating predictions of the user’s preference and then produce their recommendations

by ranking candidate items by predicted preferences.

Two main groups of CF algorithms exist (Felfernig 2014): memory-based algorithms (also

known as kNN), and model-based algorithms (also known as latent factor models). Memory-

based algorithms operate over the entire user data to make predictions (e.g., (Castro-Herrera

2009, 2010), (McCarey 2005)). In contrast, model-based algorithms use the user data to build

a model which is then used for recommendations (e.g., (Breese 1998), (Hofmann 2004)).

Memory-based algorithms are simpler, seem to work reasonably well in practice and new data

can be added easily (Felfernig 2014). For this reason, the rest of this subsection focuses mainly

on memory-based algorithms.

Memory-based algorithms have two major branches: user-user algorithms and item-item

algorithms.

User-user algorithms (e.g., (Lim 2012), (Zhang 2013)) use a direct algorithmic interpretation

of the first assumption of CF: find other users whose past rating behavior is similar to that of

the current user, and use their ratings on other items to predict what the current user will like.

This type of algorithms need:

1. A rating matrix R, stating the rating of users over different items.

2. A similarity function computing the similarity between two users (using their ratings),

s: UxU → R. Some typical similarity functions are Pearson, Constrained Pearson,

Spearman and Cosine (Ekstrand 2011).

3. A method for using similarities and ratings to generate predictions. In a nutshell, this

method uses the similarity function s to compute a neighbourhood N ⊆ U of neighbours

of a specific user and later it combines the ratings of users in N to generate predictions

for the preference for an item i of the current user. This is typically done by computing

the weighted average of the neighbouring users’ ratings of item i.

Item-item algorithms (e.g., (Verstrepen 2015)) are similar to user-user algorithms, but rather

than using similarities between users’ rating behavior to predict preferences, they use

similarities between the rating patterns of items. The assumption is that if two items tend to

have the same users liking and disliking them, then they are similar and users are expected to

have similar preferences for similar items. Similarly to user-user algorithms, item-item

algorithms need:

1. A rating matrix.

2. A similarity function.

3. A method for using similarities and ratings to generate predictions.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 11 of 53

However, in contrast to user-user algorithms, in item-item algorithms the similarity and

prediction method are based on items instead of users.

In RS where the number of users exceeds the number of available items, item-based

approaches are preferred since they provide more accurate recommendations, while being

more computationally efficient and requiring less frequent updates (Ricci 2015).

Several approaches have been proposed to improve memory-based algorithms:

● Alan (2012) uses weighting schemes to improve the similarity measures used in this

type of RS and avoiding the bias of items that are rated by a lot of users. To achieve it,

similarities are computed taking the popularity of the set of two users’ co-rated items

into consideration, e.g., an item rated by a large number of users should have less

impact on the similarity measure, and analogously an item rated by few users should

have a larger impact on the similarity score of two users.

● Tho-Sutter (2008) proposes a generic algorithm that uses tags, which are “local”

descriptions of items given by the users.

Another branch of research to improve memory-based algorithms is the incorporation of social

media information, generally by adding this information as another input of the CF algorithm

and using this social media information during the similarity measure and prediction process.

Some example are:

● Zhang (2013) proposes, in the e-commerce domain, a new prediction algorithm based

on using social media information and the brands the users liked in these social media

channels.

● Lim (2012) presents the StakeRare method, which uses CF and social networks to

identify and prioritize requirements in large software projects. StakeRare identifies

stakeholders and asks them to recommend other stakeholders and stakeholder roles,

builds a social network with stakeholders as nodes and their recommendations as links,

and prioritizes stakeholders using a variety of social network measurements to

determine their project influence. The method then asks the stakeholders to rate an

initial list of requirements, recommends other relevant requirements to them using CF,

and prioritizes their requirements using their ratings weighted by their project

influence.

The use of social media has given place to a new type of recommender, called Social

Recommenders (SR), which are discussed in subsection 2.1.4.

One problem of memory-based algorithms is the well-known cold start problem, i.e.,

providing recommendations when there is not yet data available on which to base the

predictions, because either the user or the item are new in the system (Ekstrand 2011). Another

problem of CF algorithms is the sparsity of the rating matrix because most of the users rate

only few items and, hence, the user-item rating matrix is typically very sparse (Mellville 2002).

This implies that the probability of finding a set of users with significantly similar ratings is

usually low, especially in systems that have a very high item-to-user ratio or when the system

is in the initial stage of use.

There exist several works that try to mitigate the cold-start-problem:

● Adamopoulos (2013) proposes the use of weighting schemes in memory-based

algorithms, where the estimation of an unknown user rating for an item is based not on

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 12 of 53

the weighted average of the k nearest neighbours but on the weighted percentile of the

ratings of these k neighbours.

● Fernández (2016) evaluates different approaches, based on exploiting user personality,

to solve the problem.

● Rashid (2002) also evaluates different approaches to solve the problem, but in this case

the approaches are based on the use of information theory, statistics aggregation and

personalization.

In (Pennock 2000), both memory-based and model-based approaches are combined, resulting

in a new CF algorithm that they call personality diagnosis (PD). The idea behind PD is that,

given the user’s preferences for some items, it computes the probability that this user belongs

to the same “personality type” as other users and, in turn, the probability that this user will like

new items. PD retains some of the advantages of traditional memory-based algorithms like the

fact that all data is brought to bear on each prediction and new data can be added easily and

incrementally, but it also has a meaningful probabilistic interpretation, which may be

leveraged to justify, explain, and augment results.

Some CF approaches have been proposed specifically for the Software Engineering field, and

in particular for the RE field:

● Lim (2012), introduced some paragraphs above, is one of these approaches. It focuses

on identifying and prioritizing requirements.

● McCarey (2005) presents the RASCAL recommender system. RASCAL aims to predict

the next method that a developer could use, by analysing classes similar to the one

currently being developed. RASCAL’s “users” are classes and the items to be

recommended are methods to be called. The similarity between the current class and

other classes is essentially based on the methods they call.

● Gaeul (2009) proposes a more advanced type of CF algorithm based on Markov chains

to improve the “tossing” (reassignment) of bugs to other developers, for example

because the bug has been assigned incorrectly to a developer or another developer with

additional expertise is needed. The approach incorporates a graph model based on

Markov chains, which captures bug tossing history. This model reveals developer

networks which can be used to discover team structures and to find suitable experts for

a new task and helps to better assign developers to bug reports.

● Castro-Herrera (2009, 2010), focused on the RE field, aims to improve the

requirements elicitation process of large and distributed software projects. In order to

achieve this, it presents different CF algorithms to inform individual stakeholders of

relevant forums, where particular types of requirements are discussed, that might be of

interest for them.

2.1.2 Content-based filtering (CBF) recommendation approaches

In the RS based on Content-Based Filtering (CBF) (Felfernig 2014), a user gets

recommendations for items similar to the ones she preferred in the past, in contrast to CF

techniques where the user will be recommended items that people with similar tastes and

preferences liked in the past. CBF is based on the assumption of monotonic personal interests.

CBF techniques need (Adomavicius 2005) (Felfernig 2014):

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 13 of 53

1. A set of users, usually with the addition of user profiles that contain information about

users’ tastes, preferences, and needs.

2. A set of categories (or keywords) that have been assigned to (or extracted from) the

available items (item descriptions).

3. A utility function that calculates a set of items that are most similar to items already

known to the current user. Therefore, the results of the utility function u(a, i) of item i

for user a is estimated based on the utilities u(a, ij) assigned by user a to items ij ⊂ I
that are “similar” to item i (excluding i itself). For instance, k-nearest neighbors could

be used as a utility function.

4. A similarity function, which is based on keywords extracted from the item descriptions

or categories in the case that items have been annotated with the relevant meta-

information. The major difference from the similarity metrics of CF techniques is that

in this case similarity is measured using keywords (in contrast to ratings). Therefore,

several similarity metrics used in natural language processing can be used, such as

Cosine, Dice, and Jaccard (Natt och Dag 2001).

As a result, only the items that have a high degree of similarity to whatever the user’s

preferences are would be recommended to the user.

A basic CBF approach is presented in (Musto 2010), which is based on Vector Space Models

(VSM), an established technique in the area on information retrieval. In VSM, each document

is represented by a vector in a n-dimensional space, where each dimension corresponds to a

term from the overall vocabulary of a given document collection. VSM has two advantages:

1. Its very clean and solid formalism allows to represent objects in a vector space and to

perform calculations on them.

2. Although being a simple algorithm, it is a very effective model (Basile 2010).

Additionally, Musto (2010) introduces two approaches for improvement:

1. One approach is based on random indexing, which implements a scalable and effective

VSM-based approach.

2. Another approach introducing a negation operation in order to overcome the classical

VSM problem that arises from the impossibility to manage the evidences about

negative preferences.

More advanced semantics techniques can be applied in CBF algorithms, as explained in (de

Gemmis 2015). Some of the proposals presented there aim to:

● Incorporate ontological knowledge, ranging from simple linguistic ontologies, to more

complex domain-specific ones;

● Leverage unstructured or semi-structured encyclopaedic knowledge sources, such as

Wikipedia; and

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 14 of 53

● Exploit the wealth of the so-called Linked Open Data cloud1.

An approach for recommending books based on CBF algorithms is presented in (Mooney

2004), which utilizes information extraction and a machine-learning algorithm for text

categorization. The learning of user profiles can be cast as a binary text categorization task:

each document (i.e., book) has to be classified as interesting or not with respect to the user

preferences. More specifically, the proposed system uses a database of book information

extracted from an e-commerce web distributor. Users provide 1-10 ratings for a selected set of

books, and then the system learns a profile of the user using a bayesian learning algorithm and

produces a ranked list of the most recommended additional titles from the system's catalogue.

In the RE field, CBF recommendations approaches have also been used:

● Dumitru (2011) presents a CBF recommendation approach to requirements reuse. The

basic idea is to analyse requirements which are accessible in software project

repositories and to apply clustering techniques for the intelligent grouping of such

requirements. The identified requirement groups can be analysed in future software

projects for the purpose of reuse and also for the purpose of completeness checking

(i.e., are all relevant requirements contained in the current requirements model). The

proposed recommendation approach uses a vector of keywords (derived from the

description of the new software project) which is matched with the keywords extracted

from requirements artifacts from the repository of already completed software projects.

● Castro-Herrera (2009, 2010) shows how to exploit clustering techniques for grouping

user requirements and in the following to recommend stakeholders to clusters on the

basis of CBF algorithms.

2.1.3 Knowledge-based (KB) recommendation approaches

Knowledge-based (KB) recommender systems (Felfernig 2014), compared to CF and CBF that

primarily rely on item ratings and textual item descriptions, exploit deep knowledge (semantic

knowledge) about the item in order to determine recommendations. KB techniques need

(Felfernig 2009, Felfernig 2013, Felfernig 2014):

1. Explicit knowledge about the given set of user requirements.

2. Deep knowledge about the underlying items and their properties.

3. Recommendation knowledge represented in the form of explicit constraints that relate

requirements to the corresponding item properties, or similarity metrics to select items

that are most similar to the user requirements. In the case of similarity metrics,

attribute-level similarity measures are predominantly applied.

4. A ranking algorithm to order the possible recommendations. One widespread approach

to rank items is to define a utility scheme which serves as a basis for the application of

Multi-Attribute Utility Theory (MAUT), where items can be evaluated and ranked with

respect to a defined set of interest dimensions.

1
 http://lod-cloud.net/

http://lod-cloud.net/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 15 of 53

Therefore, interacting with a KB recommender system typically means to (Felfernig 2009):

1. Answer a set of questions (requirements elicitation phase).

2. Repairing inconsistent requirements (if no recommendation could be found).

3. Evaluating recommendations.

KB algorithms do not suffer from the ramp-up problem since their recommendations do not

depend on having a base of user ratings. In addition, they do not have to gather information

about a particular user because its judgements are independent of individual tastes (Burke

2000).

Felfernig (2006) presents a KB recommender system which is domain-independent. It

provides an explicit representation of product, marketing and sales knowledge, which allows:

1. To calculate solutions which adhere to legal regulations, which are in line with a

company’s marketing and sales strategy, and which suit to the requirements of the

customer.

2. To explain solutions to a customer.

3. To support customers in situations in which no solution can be found.

The recommender dialogues in (Felfernig 2006) are based on a finite state model that describes

possible interaction sequences of a recommender system on a graphical level. Using such

representations, the formulation of questions, answers, and explanations can be automatically

adapted to the domain knowledge level and preferences of a user.

Dialogues in KB recommender systems are the focus of (Burke 1996). This work presents the

use of assisted browsing to allow accessing to information along a multitude of dimensions

and from a multitude of sources without the user needing to be aware of this complexity. The

approach has two basic parts: 1) an initial query stage through which users state their starting

point within the information space, and 2) an assisted browsing phase in which users traverse

the information space. Explanations, similarity-based retrieval and tweaking are part of a

dialogue between the user and the system in which the user comes to a better understanding

of the domain by using examples (through learning about trade-offs and looking at many

examples) and the system helps the user finding specific items of interest by gradually refining

the goal.

In the area of RE, several approaches propose the use of KB algorithms:

● Romero (2004) proposes a security requirements RS to recommend an appropriate

approach to security for a specific project. Before the recommendation process starts,

the RS needs information about the security approaches it will recommend (i.e., a

number of how much an approach fulfils specific security characteristics). During the

recommendation process, the system takes user input about the most desirable

characteristics for the security of the project (in the form of ratings) and recommends

the most appropriate security approach comparing the user’ input with the information

of the approaches.

● Kumar (2010) presents a RS for knowledge assisted agile requirements evolution. The

aim is to incorporate domain knowledge to achieve agility to the requirements

definition stage by providing requirement analysts with online domain specific

recommendations based on underlying ontologies. The framework presents a 'domain

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 16 of 53

knowledge seed' to requirement analysts. This seed provides a view of core features in

a given domain and associated knowledge elements such as business processes, rules,

policies, partial data models, use cases and test cases. These in turn are mapped with

agile requirements elements such as user stories, features, tasks, product backlog,

sprints and prototype plans. Requirement analysts can evolve the seed to suit their

specific project needs. As they modify and evolve the seed specification, they receive

domain-specific online recommendations to improve the correctness, consistency and

completeness of their requirements specification documents and executable models.

● Felfernig (2013) develops an approach to determine personalized diagnoses for

inconsistent requirements in KB recommendation scenarios. Specifically, the repairs

are proposed when no item can be recommended due to having too many constraints.

The repair proposals are generated on the basis of five different search strategies:

a) cardinality-based (i.e., detecting minimal sets of conflicting requirements),

b) similarity-based (i.e., identifying minimal diagnoses which lead to solutions

that resemble the original set of requirements as much as possible),

c) utility-based (i.e., searching for minimal repairs that are predominantly

composed of requirements which are of low importance for the user),

d) probability-based (i.e., detecting minimal diagnoses with a high probability of

being selected by the user), and

e) ensemble-based (i.e., exploiting a set of hypotheses (an ensemble) for making

the predictions, in contrast to the previous strategies, where diagnosis

predictions are based on a single hypothesis).

2.1.4 Hybrid recommendation system (HRS) approaches

Hybrid recommender systems (HRS) are based on the combination of some of the techniques

introduced in the previous subsections (Burke 2002). The motivation of combining different

recommender techniques is twofold:

1. To achieve better recommendations (Felfernig 2014); and

2. To overcome one disadvantage of one of the techniques being used (Ricci 2015).That

is, a HRS combining techniques A and B tries to use the advantages of A to fix the

disadvantages of B. For instance, CF techniques suffer from new-item problems (i.e.,

they cannot recommend items that have no ratings), but this is not the case in CBF

techniques since the prediction for new items is based on their description (features),

which are typically easily available. Therefore, combining CF and CBF is a good idea

when trying to overcome the new-item problem.

Given two (or more) basic RS techniques, several ways have been proposed for combining

them to create a new HRS (Burke 2002):

1. Weighted HRS, which is based on the idea of deriving recommendations by combining

the results computed by individual recommenders. For instance, implementing CF and

CBF techniques separately, and combining (e.g., summing up) their predictions later

on.

2. Mixed HRS, which main principle is the idea that predictions of individual

recommenders are shown in one integrated result. One example could be implementing

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 17 of 53

CF and CBF techniques separately, and integrating the results into one score using

some principle, such as the zipper principle (i.e., best CF prediction receives highest

score, best CBF prediction receives the second highest score, second best CF prediction

receives third highest score, and so forth).

3. Cascade HRS, which core idea is that recommenders in a pipe of recommenders

exploit the recommendation of the upstream recommender as a basis for deriving their

own recommendation. For instance, implementing a CF technique and then using these

predictions as one further input for a CBF technique.

Earlier HRS often internally combine two classical techniques, usually CF and CBF (e.g.,

Melville 2002). Given that in these types of HRS specific properties of the individual

techniques are exploited, they lack extendibility and easy integration of other types of

techniques (Dooms 2013). In (Melville 2002), CF and CBF techniques are combined to

overcome the shortcomings of CF. They provide a framework for combining both approaches,

which uses a CBF predictor to enhance existing user data (i.e., to convert a sparse user ratings

matrix into a full ratings matrix), and then provides personalized recommendations through

CBF. In contrast, HRS using individual recommendation techniques as black boxes (e.g.,

(Dooms 2013)) allow to easily extend their models with other techniques of any type (Dooms

2013).

A branch that has been explored inside HRS is to combine more classical recommendation

techniques with the so-called Social Recommenders (SR) (i.e., any RS targeting social media

artefacts, such as blogs, social tagging, video sharing, etc.) (Guy 2015):

● Bernardes (20015) proposes a framework for constructing HRS based on social

network analysis. This framework allows to describe association rules for both

traditional CF recommenders and SR.

● Basu (1998) presents an inductive learning approach to recommendation that is able to

use both ratings information (coming from SR) and other forms of information (coming

from CBF techniques) about each item in predicting user preferences. In particular,

users’ ratings are used in the inductive learning process to create hybrid features.

Hybrid features are social features that are influenced by content. For instance, in the

domain of movies recommendation, a hybrid feature would be users who liked dramas,

reflecting both information of users’ likes (from SR) and a specific genre (from CBF).

Finally, several advanced frameworks have been proposed to create HRS, such as (Dooms

2013) and (Hussein 2014), with the aim of easing the process of building and tuning a HRS,

which usually is tedious and time-consuming:

● Dooms (2013) focuses on dynamically building personalized HRS on an individual

user basis by a means of a dynamic online learning strategy that combines the most

appropriate recommendation techniques for a user based on real-time relevance

feedback. The framework integrates over 20 techniques from the recommendation

framework MyMediaLite2.

2
 http://www.mymedialite.net/

http://www.mymedialite.net/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 18 of 53

● Hussein (2014) introduces a software framework for building complex hybrid, context-

aware recommender systems. The framework provides a range of recommendation

techniques and strategies for producing group recommendations, templates for

combining different methods into HRS, and a means for integrating existing user or

product data from external sources such as social networks. The pre-implemented

recommenders include:

a) a variety of techniques provided by Apache Mahout3 (an item-based and a user-

based CF, an item-average recommender, a recommendation algorithm that

randomly selects a set of items, and a slope-one recommender),

b) two variations of spreading activation-based recommenders as examples of

CBF algorithms, and

c) a rule-based recommender.

2.1.5 Other types of recommender approaches

Apart from more classical types of recommenders introduced in the previous sections, in the

recent years other techniques from the area of data mining have been incorporated in RS. Here

we discuss three of them: text mining, clustering and classification. We focus only on those

approaches related to Software Engineering and RE fields discovered in the literature

snowballing carried out, since they are of special relevance to OpenReq.

2.1.5.1 Text mining

The purpose of text mining is to process unstructured textual information and extract

meaningful numerical indices from the text, in order to make the information contained in the

text accessible to the different data mining algorithms (statistical and machine learning)

(Aggarwal 2012).

Inside text mining, similarity detection (i.e., detection of similar texts by using either their

syntactic or semantic properties) is an established field. In (Weiß 2007), similarity is used to

automatically predict the fixing effort, i.e., the person-hours spent on fixing an issue, such as

a software bug. Given a new issue report, the Lucene4 framework is used to query the database

of resolved issues for textually similar reports (using the nearest neighbour approach) and use

their average time as a prediction.

Assignments of developers to bug reports has also been tackled from a similarity perspective:

● Olga (2009) presents a framework for automated assignment of bug-fixing tasks which

infers knowledge about a developer's expertise by analysing the history of bugs

previously resolved by the developer. Then, it applies a vector space model (VSM) to

recommend experts for fixing bugs, matching the new bug VSM representation with

the most similar developer VSM representation. In addition to similarity, other

heuristics are taken into account, as current workload and preferences of the developer.

3
 http://mahout.apache.org/

4
 https://lucene.apache.org/core/

http://mahout.apache.org/
https://lucene.apache.org/core/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 19 of 53

● Nagwani (2012) proposes an algorithm to discover experts for fixing new software

bugs which is based on the analysis of their textual information (e.g., summary and

description attributes). Frequent terms are generated from this textual information and

then term similarity is used to identify appropriate experts (developers) for the newly

reported software bug.

Text mining is used in combination with machine learning techniques in (Menzies 2008) to

assist test engineers in assigning severity levels to defect reports. The proposed algorithm is

based on the automated extraction and analysis of textual descriptions from issue reports: text

mining techniques are used to extract the relevant features of each report, while machine

learning techniques are used to assign these features with proper severity levels (taking into

account the severity levels already assigned to other issues to construct rules about when an

specific defect level should be assigned).

2.1.5.2 Clustering

Another approach used in RS is clustering. Clustering refers to the grouping of a particular set

of objects based on their characteristics, aggregating them according to their similarities (Tan

2005a). Different clustering algorithms exists, such as k-means, DBSCAN, and HDBSCAN

(Verma 2012). k-means can easily handle large data but the number of clusters (i.e., the number

of topics extracted from the requirements) must be defined a priori. A challenge of defining

this number of clusters a priori is to understand the domain and the input. While using

HDBSCAN, there is no need to specify the number of clusters explicitly, but it does not scale

well and experimentation with data coming from different sources is needed.

Clustering has been used in RSs as a part of CBF techniques (Dumitru 2011) (introduced in

the subsection 2.2.2 CBF recommendations approaches) or by its own (Cleland 2009). An

approach to support effective feature management has been introduced by (Cleland 2009)

where clusters of similar requirements are exploited for the identification of redundancies and

the prioritization of feature requests. In (Chien 2016), clustering is used for topic modelling.

It uses structural learning and inference of latent themes and topics for sentences and words

from a collection of documents, respectively. The relation between themes and topics under

different data groupings is explored through an unsupervised procedure without limiting the

number of clusters.

2.1.5.3 Classification

Classification is concerned with identifying a class/category of an unseen observation (Tan

2005b). Classifiers might solve a binary classification problem (i.e., classifying the data into

only two classes) or a multi-class problem. A range of classification algorithms exist, such as

support-vector machines, decision trees, and k-nearest neighbour.

Antoniol (2008) uses classifiers to decide whether an item in a bug repository is a bug or not.

The approach uses a supervised machine learning approach that alternates decision trees, naive

bayes classifiers, and logistic regression.

Classifiers have also been used to give value to particular properties of issues in bug

repositories, especially the severity property of bugs (i.e., the impact the bug has on the

successful execution of the software system):

● Fitzgerald (2011) aims at identifying those bugs that may imply an imminent failure in

the system. For doing so, the proposed framework automatically constructs failure

prediction models using machine learning classification algorithms and allows to

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 20 of 53

compare the performance of the different techniques included in the framework (i.e.,

naive bayes, decision tables, linear regression and M5P-Tree).

● Lamkanfi (2010) investigates whether it is possible to accurately predict the severity

of a reported bug by analysing its textual description and later on classifying them

using a naive bayes classifier, which is based on the probabilistic occurrence of terms

(i.e., the features). The assumption behind the approach is that the reporter of a bug

uses potentially significant terms in the descriptions which distinguish severe from

non-severe bugs. In a follow-up study, Lamkanfi (2011) compares four well-known

classification algorithms (namely, naive bayes, naive bayes multinomial, k-nearest

neighbour and support-vector machines) with respect to accuracy and training set size.

For the cases under investigation in the study, naive bayes multinomial performs

superior compared to the other proposed algorithms.

Another area where classifiers have been used is the assignment of developers or maintenance

teams to new issues in tracker systems:

● Di Luca (2002) proposes to automatically classify incoming tickets, routing them to

specialized maintenance teams. The idea behind the approach is to consider this

problem as a multi-class classification (having as many classes as maintenance teams).

The study focuses on the comparison of different classification approaches for carrying

out this task, specifically vector space model, bayesian model, support-vector machine,

classification trees and k-nearest neighbour classification.

● Cubranic (2004) treats the problem of assigning developers to bugs as an instance of

classification. More specifically, it is a multi-class, single-label classification problem:

each developer corresponds to a single class, and each document (i..e, a bug) is

assigned to only one class (i.e., a developer working on the project). The classification

algorithm is based on bayesian learning.

● Anvik (2006), unlike the previous approaches, presents a semi-automated approach for

the assignment of reports to developers. The approach applies a machine learning

algorithm (namely, support-vector machines) to the bug repository to learn the kinds

of reports each developer resolves. When a new report arrives, the classifier produced

by the machine learning technique suggests a small number of developers suitable to

resolve the report. Finally, the triager (i.e., the person doing the triage) must select the

actual developer from the recommended set to whom the bug will be assigned. The

triager may make this choice based on knowledge other than that available in the bug

repository, such as the workloads of the developers, or who is on vacation.

2.1.6 Context-awareness in recommender systems

Context-aware recommender systems (CARS) generate more relevant recommendations by

adapting them to the specific contextual situation of the user (Adomavicius 2011).

In typical recommender research, the focus is on techniques that recommend various products

or services based on specific knowledge about the user. Such knowledge includes individual

tastes, preferences as well as users' past behaviour (e.g., previous purchases). Several existing

approaches focus on recommending the most relevant items to users and do not take into

account any additional contextual information, such as time, position, weather, user’s mood,

presence of other people, or even the type of device which the user is currently using. The

traditional view on RS deals with only two types of entities, users and items, but does not put

them into context when providing recommendations.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 21 of 53

The relevance of contextual information has been recognized by researchers and industry in

many different areas (for instance marketing, mobile computing, e-commerce, information

retrieval). Besides, context-awareness has been increasingly recognized as a critical issue in

many recommendation applications and the importance of this topic is also supported by

various papers on CARS in major conferences, such as ACM Recommender Systems.

Several different algorithmic approaches exist on how to deal with context-awareness in RS.

Below we describe some approaches, which can be of relevance for OpenReq:

● Baltrunas (2014) presents an algorithmic approach that uses item splitting pre-filtering

methods for context-aware recommendations. The main idea of “item splitting” is that:

a) the same recommendable item can be experienced or consumed by users in

different contextual settings (for example in summer or in winter), and

b) the explicit user ratings (preferences of the user) for the items may depend on

this contextual setting.

The approach proposes to split the actual item into two or even more fictitious items,

one for each contextual condition. When generating the recommendations the user’s

current contextual condition is taken into account and a rating prediction for the

fictitious item that matches the user’s current context is calculated. An evaluation of

the item splitting approach shows that it can help to improve the prediction quality of

a recommender system in the analysed application scenarios.

● Campos (2014) focuses on time, as one of the most valuable contextual factors in many

RS domains. The empirical review of (Campos 2014) includes common evaluation

practices and present methodological issues related to the comparative evaluation of

time-aware RS based on historical data sets. The main point of the work is that the

choice of the evaluation conditions impacts the ranking of different recommendation

strategies, which can also be observed in context-unaware RS. To counteract this kind

of issues, a set of guidelines as well as a corresponding methodological framework for

a robust and fair evaluation process is proposed.

● Hussein (2014) focuses on the systems engineering perspective. It introduces a

software framework for the development of context-aware and hybrid recommender

systems. Despite the high practical relevance of RS in industry, little research on

engineering aspects of such systems has been done, and no comprehensive software

framework is yet available that supports component-based development approaches

for such complex systems. The main challenges when designing such a framework are:

a) the choice of the appropriate level of abstraction such that the individual

components can be (re)used in various application domains, and

b) the number of possible data sources that need to be integrated.

The work points out that one of the most important requirements for the design of such

a framework is how to acquire and process various types of contextual information.

Furthermore, it presents the general architecture, as well as the functionality of the pre-

implemented framework components and presents the first analytical and empirical

evaluation of the framework.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 22 of 53

2.2 Improvements of requirements quality

This section summarizes a systematic mapping study (SMS) on the topic of requirement quality

improvements performed following the guidelines of (Petersen 2009).

We obtained a first set of references for the SMS performing a manual search. This manual

search consisted on reading through the titles, keywords, and when in doubt abstracts of the

manuscripts published in the proceedings of the 2015-2017 editions of the two most relevant RE

venues (IEEE International Requirements Engineering Conference, RE5; Working Conference

on Requirements Engineering Foundation for Software Quality, REFSQ6) and in the issues of

the Requirement Engineering Journal7 for the same period. We then performed an automatic

search, based on digital libraries (IEEE Xplore8, ACM Digital Library9, SpringerLink10 and

ScienceDirect11), for the following terms requirement engineering, quality assurance,

recommender system, and quality property in title, abstract, and keywords. From this initial

set of references, we removed the ones not in scope with the topic of requirements quality

(e.g., publications in other fields), and non-English publications. We then performed a single

iteration of forward and backward snowballing on all the remaining references using Google

Scholar12 cited by functionality and the paper reference list, respectively. After reading the

titles and abstract of the retrieved set of papers (~1200), we selected 163 publications reporting

studies deemed relevant for requirements quality improvement in the context of OpenReq.

In Table 2, we show a representative sample of the publications found. By “representative”,

we mean that the sample has been chosen to cover the requirement quality improvement

functionality which the OpenReq infrastructure will offer.

The SMS shows that the main focus of quality improvement deals with structural properties

of the requirements, such as natural language text, whereas secondary foci are stakeholder

engagement, requirements completeness, and conformance to requirement templates.

Therefore, we report the state-of-the-art according to the following quality targets (Figure 2):

unambiguity, conformance to templates, completeness, stakeholder engagement, and other

less common aspects, each one being presented in the subsections below.

2.2.1 Unambiguity

Ambiguity exists within natural language (NL) requirements because NL has a tendency to

be ambiguous (Wilmink 2017). When it comes to writing requirements with more clarity (less

ambiguity), the first two major steps are the definition and identification of the ambiguities

that exist within NL requirements (Berry 2003, 2004). These two steps are:

5
 http://www.re2017.org/

6
 https://refsq.org/2017/welcome/

7
 https://link.springer.com/journal/766

8
 http://ieeexplore.ieee.org/Xplore/home.jsp

9
 https://dl.acm.org/

10
 https://link.springer.com/

11
 https://www.sciencedirect.com/

12
 https://scholar.google.es/

http://www.re2017.org/
https://refsq.org/2017/welcome/
https://link.springer.com/journal/766
http://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://link.springer.com/
https://www.sciencedirect.com/
https://scholar.google.es/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 23 of 53

1. Learn to write less ambiguously and less imprecisely.

2. Learn to detect ambiguity and imprecision.

The state-of-the-art in improving requirements quality by addressing ambiguity in

requirements documents is largely focused in the second objective, by automatically detecting

ambiguity. However, there is still ongoing work to address the definition and framing of

ambiguity within requirements.

Table 2. Improvements of requirements quality: state-of-the-art summary

Reference Quality target Approach Tool availability

(Berry 2003) Unambiguity Literature Review No

 (Berry 2004) Unambiguity Literature Review No

(Ferrari 2016) Unambiguity Stakeholder Interviews No

(Ferrari 2017) Unambiguity NLP (word vectors) No

(Gleich 2010) Unambiguity NLP (POS tagging)

Lookup dictionary

Yes

(Huertas 2011) Unambiguity Formal language definition No

(Sabriye 2017) Unambiguity NLP (POS tagging) No

(Wilmink 2017) Unambiguity Lookup Dictionaries Yes

(Yang 2010) Unambiguity NLP (several techniques) Yes

(Arora 2014)

Conformance to requirement

template (Rupp)

NLP (text chunking) Yes

 (Arora 2015) Conformance to requirement

template (EARS)

NLP (text chunking) Yes

(Lucassen 2015) Conformance to requirement

template (user story)

NLP (several techniques) Yes

(Beaumer 2016) Completeness Semantic role labelling

Information retrieval

No

(De Vries 2016) Completeness Static analysis

Evolutionary computing

No

 (De Vries 2017) Completeness Static analysis

Evolutionary computing

No

(Eckhardt 2016) Completeness Sentence patterns No

(Ott 2013) Completeness Support vector machines Yes

(Dalpiaz 2017) Stakeholder engagement Gamification Yes

(Lombriser 2015) Stakeholder engagement Gamification Yes

(Ninaus 2014) Stakeholder engagement Traffic light No

(del Sagrado 2017) Others (Stability) Bayesian network Yes

(Unterkalmsteiner 2017) Others (General) Cognitive load theory No

Figure 2. Requirements quality improvements targets

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 24 of 53

This section begins with addressing the main categories of ambiguity in RE as defined by

Berry (2004), followed by the most recent work of (Ferrari 2016) to account for the recent

progress in expanding the definition and scope of ambiguity in RE. This section will end with

a summary of the most recent work in addressing the second objective above (i.e., learning to

— automatically — detect ambiguity in requirements documents).

Berry (2004) collects and summarises past work addressing ambiguity in RE. Most notably,

this work lays out a set of linguistic definitions for ambiguity in RE that are subsequently cited

and used as starting point for most of the papers to follow in this section. They distinguish

between four broad classes of linguistic ambiguity:

● Lexical ambiguity, which refers to situations in which a word has several meanings.

● Syntactic ambiguity, which occurs when a sentence (or sub-structure of a sentence) has

more than one grammatical structure (more than one parse tree, in NLP terms).

● Semantic ambiguity, which refers to a situation in which there are no lexical or

syntactic ambiguities but still there is more than one meaning to a sentence.

● Pragmatic ambiguity, which refers to a sentence that has several meanings depending

on the context in which it is used. Whereas semantic ambiguities have more than one

meaning even with the surrounding context known, pragmatic ambiguity can be

resolved by adding context around the sentence.

These definitions form the basis for the majority of the work on ambiguity in RE.

Ferrari (2016) looks to expand the scope of addressing ambiguity within RE to include the

activity of requirements elicitation, a process that is usually conducted verbally. The work

begins by reviewing the definitions summarised in the work of (Berry 2003, 2004), followed

by adding to those definitions an expansive list of ambiguous situations that were encountered

during the research. The novel addition of this work to the knowledge of ambiguity in RE,

beyond the experiments with industry practitioners, is the incorporation of acceptability from

the analyst's perspective. It accounts for interpretability (i.e., the ability to assign at least one

meaning to a customer statement), and also whether or not the requirement defined by the

customer is reasonable (i.e., a changing definition depending on the analyst). The work

includes 12 different situations that were seen during the experiments conducted with

practitioners. Out of them, five possible situations based on logical combinations of

interpretability and acceptability are proposed:

1. Interpretation unclarity involves the situation in which the analyst cannot interpret

what the customer is saying, which automatically means that the analyst cannot accept

what is being said.

2. Acceptance unclarity is when the analyst correctly interprets what is being said, but

does not accept it.

3. Multiple understanding is the classic ambiguous situation in which the analyst accepts

(and therefore interprets) multiple meanings to something a customer said.

4. Detected incorrect disambiguation is the scenario that most of the research in RE

ambiguity is trying to create: the analyst interprets what the customer is saying,

recognises that it is wrong, and does not accept it.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 25 of 53

5. Undetected incorrect disambiguation is the scenario that RE ambiguity research aims

to eliminate: the analyst incorrectly interprets the customer and then accepts it, despite

the misunderstanding.

These definitions, although not widespread yet, provide an in-depth perspective into

requirements elicitation and the ambiguous situations that can arise.

With the work of (Berry 2003, 2004) and (Ferrari 2016) laying the groundwork for step one

of addressing ambiguity within requirements (learning and defining ambiguity within

requirements), the next step of automatically detecting and addressing ambiguity within

requirements is addressed in the following research. The papers presented here are a mix of

look-up dictionaries (i.e., ontologies, and NLP techniques such as parts-of-speech tagging and

word vectors).

Gleich (2010) proposes an approach for automatic ambiguity detection through the use of text-

matching with regular expressions, similar to the functionality of the Unix command grep.

The types of ambiguities identified in this work originated from the work (Berry 2003) and a

Siemens-internal guidelines for requirements writing style guide (no source is included in the

work). From these two sources, it implements regular expressions to automatically identify 38

types of ambiguities. Following the creation of the tool, the implementation is tested through

a comparison with human annotators. For the study, 50 German and 50 English sentences are

extracted randomly from real requirements documents. Then 11 subjects (requirements

engineers, masters students, and PhD students) mark ambiguities in these sentences. The

results are similar for both English and German at ~95% precision and 86% recall. However,

these results are dependent on comparing directly with the abilities of the human annotators.

In other words, the results only considered the situations in which the human annotator marked

ambiguities. The true precisions and recalls of this tool (for both English and German), when

taking into account all possible ambiguities to be marked, are ~40% and ~54%, respectively.

Given that it is common to compare an automated tool to that of a human annotator (since

manually annotating is the alternative), it is reasonable to consider the first set of results.

Yang (2010) explains the implementation of a tool called Nocuous Ambiguity Identification

(NAI) to automatically identify nocuous (i.e., harmful) coordination ambiguities in

requirements documents. As Engelhardt (2010) explains, “coordination is a procedure that

links two sentence elements called conjuncts” (e.g., the use of and and or). The first stage of

the tool (called ambiguity detection) identifies ambiguities through part-of-speech tagging,

shallow parsing, word co-occurrence, and word distribution. The second (nocuous) stage of

the tool utilises machine learning and manual annotation of ambiguous requirements as

harmful (or not) to build a classifier capable of automatically identify ambiguous requirements

beyond a nocuous threshold. The results of the work show the tool is able to produce precision

and recall as high as 80% in identifying harmful ambiguous requirements.

Huertas (2011) proposes a formal language to measure the degree of ambiguity in a document

based on the knowledge of the stakeholders who will be involved in the creation of the

document. The research is predicated on the work of (Swinney 1979), which shows that “even

when a context is strongly biased indicating a single meaning for a word, reader's brain

accesses every possible meaning for that word”. Huertas (2011) extends this finding in the

context of RE to imply that if all stakeholders have a shared knowledge state about the words

and phrases used in the requirements document, then “even if the specification is ambiguous

in many ways, it will be completely unambiguous and harmless to that given set of

stakeholders”. The presented framework is used in a case study with six stakeholders from a

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 26 of 53

company. The results show that out of the 20 requirements analysed, only eight words are

“potentially ambiguous”. These results show that the framework can be applied with real

practitioners, but does not test the validity of the framework itself, nor questions the

assumptions made about stakeholder's shared-knowledge assumed from the work of Swinney.

Wilmink (2017) proposes the use of weak and strong phrases as well as subjective and non-

verifiable terms as a process of identifying ambiguities in requirements documents. As

described by (Wilson 1997), “weak phrases is the category of clauses that are apt to cause

uncertainty and leave room for multiple interpretations”, whereas the absence of those weak

clauses means the phrase is strong. Subjective terms are “words of which the semantics [are]

not objective” such as user friendly and easy to use, whereas non-verifiable terms are “hard to

verify as they offer a choice of possibilities” such as provide support and as a minimum

(Femmer 2014). Wilmink (2017) develops a tool called Tactile Check that implements the

lookup functionality available from two independent tools, NASA ARM (Wilson 1997) for

weak and strong phrases and SMELL (Femmer 2014) for subjective and non-verifiable terms.

Although the tools have more complex functions, the work harness just the basic lookup

functionality. To test the viability of the tool, Tactile Check is applied to two requirements

documents from industry, analysing a total of 293 requirements and creating a total of 454

annotated phrases. Then, three analysts review the annotations created by the tool to

summarise their perspective on the usefulness of the tool. The results show that the weak

phrases are beneficial to identifying ambiguous requirements with precision at 92% and recall

at 87%, but the strong phrases are not. It appears that the usefulness of subjective and non-

verifiable terms is not tested directly, but rather used to strengthen the dictionaries used for

weak and strong phrases.

Sabriye (2017) proposes using part-of-speech tagging to automatically identify ambiguities in

requirements documents. In particular, it looks for four identifiable patterns in the POS

tagging: lack of a full sentence stop, passive voice, more than one parse tree, and the existence

of and and or logic within the same sentence. These four rules are designed to cover a number

of ambiguity categories defined by (Berry 2003). This research is preliminary as the methods

described are not implemented, although it includes as plans for future work the

implementation and testing.

Ferrari (2017) proposes a system to estimate the degree of ambiguity in “typical Computer

Science (CS) words”. The system creates context-dependent word vectors using Wikipedia

articles under certain categories as the basis for how the word vectors are defined. It utilises

the word2vec algorithm (Mikolov 2013) to create different sets of word vectors for the same

bank of words, using a different category of Wikipedia articles for each set. With this technique

in place, the authors can create different word vectors for a word such as system by drawing

on Wikipedia articles first from the CS domain, and then from the medical domain. With this

technique at hand, multiple sets of word vectors are created for the top 100 CS words (top 100

words used in a randomly created corpus from Wikipedia CS articles), comparing the

difference in word vectors (difference in meaning) to the domains of Electronic Engineering,

Mechanical Engineering Medicine, Literature, and Sports. The results show that many of the

most used — and arguably most important — words such as code, database, support, and

programming have different meanings across domains. This points to the potential ambiguity

contained within these words when working across domains.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 27 of 53

2.2.2 Conformance to templates

Templates or boilerplates are frequently used to structure requirements. This allows the authors

of the requirement documents to focus on eliciting the specific information requested by the

template. Moreover, such structure makes automatic requirements analysis easier. Therefore,

it is important, from a quality assurance perspective that the requirements conform to the

templates.

Arora (2013, 2015) proposes a template conformance checking technique based on text

chunking — a NLP approach which identifies sentence segments (i.e., chunks). The templates

under investigation, namely Rupp and EARS, are transformed into backus-naur form

grammars. This allows to define a series of pattern-matching rules for checking conformance

based on the identified chunks. The tool RETA (REquirement Template Analyzer) is developed

to demonstrate the proposed approach. The evaluation consisted of four case studies (two using

Rupp and two using EARS) in the context of safety critical systems (e.g., satellite control,

nuclear energy safety control) covering more than 1700 requirements. The results show that,

from a practical standpoint, the tool is accurate for automatically checking requirements

conformance to templates. Specifically, the number of false positives and false negatives is

small across all cases in absolute numbers (38 in total) and as percentage of total number of

non-conformant requirements (from 5% to 18%).

Lucassen (2015) presents an NLP-based approach to assist stakeholders in producing high

quality requirements by enforcing the conformance to user stories templates. The work first

devises a conceptual model of high-quality user stories based on three high-level criteria —

syntactic quality, semantic quality, and pragmatic quality— which are further broken down

into 14 criteria (e.g., independent, uniform, unique, and complete). A tool, AQUSA, enforces

that the guidelines for writing user stories, based on these criteria, are correctly followed. The

tool supports syntactic criteria and, partially, pragmatic criteria, whereas semantic ones are not

covered. The evaluation of the tool is done on three sets of user stories collected from industry.

The tool shows 71% precision in detecting the user stories that violated quality criteria. The

results show that one of the most common violations is minimality —i.e., the syntactic quality

property for which a user story should not contain more than role (i.e., a relevant role should

always be defined), means (i.e., define a subject with an intent targeting an object), and ends

(i.e., a reason for the mean).

2.2.3 Completeness

A requirement is complete if it contains the necessary information to enable proper

implementation and verification. Therefore, a complete requirement expresses the whole need

and states all its conditions and constraints.

De Vries (2016, 2017) proposes an approach based on symbolic analysis and evolutionary

computation which identifies a set of counterexamples representing requirement

incompleteness in the context of hierarchical requirements modelling. In the proposed

approach, a requirement is considered to be incomplete if there exists a case where a parent

requirement is unsatisfied while the set of its decomposed requirements are satisfied. Thus, the

approach is able to identify incomplete requirements decomposition. The work is

demonstrated on a set of requirements for a cruise control system. The combination of static

analysis and evolutionary computing yields better results than static analysis alone and

provides a complete set of counterexamples through the application of evolutionary

computing.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 28 of 53

Baumer (2016) proposes an approach to identify incompleteness in user stories and suggests

specific corrective actions based on the set of existing user stories. The work employs semantic

role labelling to assign a semantic label to each predicate and then leverages ontologies to

check whether the arguments expected by each semantic label are also present (e.g., the

predicate send has arguments such as sender and send-to). Suggestions for filling missing

arguments are given based on similar user stories obtained using information-retrieval

approaches.

Similarly, Ott (2013) proposes an approach to classify large amount of natural language

requirements into topics to help stakeholders recognize incompleteness when reviewing

requirements. It proposes a tool, ReCaRe, which uses support-vector machines to categorize

text. The tool is evaluated in a small case study with ten masters’ students on a 3000 pages

requirement specification document provided by Mercedes-Benz. The results show the initial

benefits of using topic classification for the identification of incomplete specification.

However, the tool does not automatically recommend improvement actions.

Rather than on functional requirements, the approach proposed in (Eckhardt 2016) focuses on

incompleteness, and related corrective actions, for performance requirements. It provides a

definition of completeness for performance requirements based on the presence of content

elements in the textual representation of the requirement. Accordingly, it defines i) strongly

complete, ii) weakly complete, and iii) incomplete requirements if i) all mandatory elements

are explicitly defined in the text, if ii) all mandatory elements are explicitly or implicitly

defined in the text, or if iii) at least one mandatory element is missing. Based on this definition,

sentence patterns are derived, which correspond to the three levels of (in)completeness. The

evaluation is based on 58 performance requirements gathered from industrial specifications.

The results show that 86% of the existing requirements can be rewritten following the

suggested patterns. However, only 18% of the requirements are strongly complete, whereas

32% are weakly complete. The remaining incomplete ones are not testable and will likely

cause problems in later phases of the life cycle.

2.2.4 Stakeholder engagement

Stakeholder engagement deals with the participation of stakeholders in requirements activities,

such as workshops and meetings. Lack of engagement can lead to poor quality requirements

(e.g., requirements that do not take into account all perspectives) and ultimately to project

failure.

Gamification techniques are shown to improve requirements quality by fostering active

participation of stakeholders. Lombriser (2015) uses the most popular gamification elements

(i.e., points, badges, and leader boards) in the context of scenario-based RE. According to the

proposed framework, gamification has a positive impact on stakeholders engagement because

it improves their motivation, which, in turn, positively impacts performance measured in terms

of creativity, productivity and requirements quality measured using the INVEST model,

according to which a user story should be Independent from others, Negotiable, Valuable,

Estimable, Small enough to fit in an iteration, and Testable. To test the framework, a web-

based requirements engineering platform (called Captain Up) is developed, which contains 17

different game elements. The experiment was carried out with 12 IT professionals and

evaluated the performance of the stakeholders using the platform with respect to the ones who

did not. The results show that gamification improves quality characteristics of requirements

(user stories) such as independence, effort estimations, size, and testability. However, no

significant results are obtained for characteristics such as negotiability and value. Moreover,

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 29 of 53

using the Kano model, which can determine how satisfied or dissatisfied an end user would be

given not only the presence but also the absence of certain features, more than half of the user

stories produced by the stakeholders using the gamified platform were rated as attractive

requirements.

Dalpiaz (2017) presents a gamification-based approach to foster the involvement of the crowd

in requirements engineering tasks. Using the design science methodology approach (Peffers

2007) —i.e., tightly interpolating cycles of artefact development and evaluation— the platform

REfine is devised based on a series of interviews with ten expert requirement engineers. On

the platform, the crowd of stakeholders shares their needs and learns from each other to reach

consensus on the requirements to be implemented. This is achieved through a mechanism of

comments and branching/merging which enables explicit negotiation. Nevertheless, the crowd

should be engaged to ensure their participation on the platform. To that end, several

gamification elements are employed, such as leader board, points, roles, and explicit

endorsement. The platform is evaluated with a one-month long study involving 19 participants

(i.e., product managers, developers, clients, end-users). The results show that the motivation

to perform requirements engineering task was improved and that basic features, such as

commenting and voting, were considered very useful as opposed to pure game-like features

(e.g., leaderboard) which were rated neutrally. Nevertheless, a group of experts evaluated the

output of the requirements engineering activities performed on the platform and suggested that

the quality of the requirements is not significantly better than usual (e.g., using traditional

platforms). The work also points out the difficulty in involving a large number of participants

as the crowd might not be representative of the domain of the system, or the vocabulary can

vary between such large population of different stakeholders.

Ninaus (2014) presents a tool, IntelliReq, which leverages a traffic lights feedback mechanism

to engage stakeholders in the different requirements-related tasks, including quality assurance.

For example, a red traffic light is associated to a neglected requirement indicating that it needs

to be reviewed. From a psychological standpoint, this technique leverages the stakeholders’

needs for closure with a task and persuades them to take action until a state of completeness is

reached (i.e., green light). A qualitative assessment of the traffic light feature with 20 subjects

shows that such quality assurance recommendations are helpful and should be constantly

displayed. A controlled experiment with 32 subjects (i.e., computer science students) acting

as release managers working on an existing requirement model shows that the group using

traffic light recommendation needed less interaction steps and less time to successfully

complete a release with respect to a control group (i.e., subjects not supported by the traffic

light).

2.2.5 Others

The results of our SMS shows that there are other requirements quality characteristics which

are less investigated.

Unterkalmsteiner (2017) proposes a taxonomy as the basis for a requirements quality

framework. Through a series of interviews with stakeholders of the Swedish Transportation

Administration, the work prioritizes a set of quality attributes and defines the relationships

among these attributes. The novelty in the approach lies in the use of cognitive load theory for

making decision regarding the rules to be followed when writing requirements specification.

The work suggests several heuristics to measure cognitive load indirectly as well as directly.

Although it is at an early stage, the inclusion of cognitive measures for requirements quality

recommendation appears to be promising.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 30 of 53

A recent work of (del Sagrado 2017) aims at recommending requirements which are likely to

change, therefore, suggesting to stakeholder whether a requirement specification is sufficiently

accurate or might require further revision. Using a bayesian network —built based on data

from longitudinal interviews with two expert requirement engineers— the work shows that it

is possible to locate which requirement specification concerns should be addressed to improve

its stability.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 31 of 53

3 PERSONAL STAKEHOLDERS’ RECOMMENDER ENGINE

In this section we give an overview of the recommendations for the stakeholder’s approach

that will be developed in OpenReq. Specifically, subsection 3.1 describes the recommendation

tasks that are part of the stakeholders’ recommender engine, subsection 3.2 details the

algorithms, evaluation and technologies that will be used, and subsection 3.3 provides a

description of the architecture of the stakeholders’ recommender engine. Figure 3 summarizes

the main points that will be further explained in the next subsections.

Figure 3. Personal recommendations in OpenReq overview

3.1 Recommendation tasks

As described in the DoA, recommendations for individual stakeholders will be related to the

screening and recommendation of relevant requirements, to the improvement of requirements

quality, to the prediction of requirements properties, and to the identification of relevant

stakeholders. These recommendations will be context-aware, meaning that the current context

of the stakeholders (e.g., historical data about the roles the stakeholder had in the past, past

involvements in specific requirements, and the last requirements the stakeholder has

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 32 of 53

consulted) will be taken into account when providing the recommendations. In the following,

we describe each one of these groups of recommendations more precisely:

A. Recommendations about screening and relevant requirements. The recommendations in

this group are related to the:

1. Screening of requirements. To reduce the overall efforts in requirements engineering

tasks, a systematic screening of the available and relevant requirements is essential.

This screening can include, among others, requirements of the current project (for

instance from past releases) as well as requirements from other projects. Such

techniques (for instance, reuse appropriate requirements from other projects) are the

basis for saving a lot of effort when adding requirements to a certain project. In

addition, screening of requirements could be used for identifying outdated

requirements (i.e., requirements that are old and are not relevant any more for a

software project) that could be eventually removed to maintain requirements up to date.

This is especially the case in large open source projects that are maintained for years,

where some old requirements have not been implemented and will never be

implemented (because they are not relevant anymore).

2. Extraction of actual requirements. In most industrial projects the requirements have to

be extracted out of an integrated document (for instance, a tender document). In order

to reduce the effort of the requirements engineers the idea is to automatically recognize

and recommend relevant requirements out of such documents.

3. Identification of similar requirements, in the same project or from previous ones. In

RE processes, major problems occur very often in cases where different people are

responsible for the identification of requirements (especially out of text documents).

There exist often duplicate requirements which are formulated differently by different

people but which describe the same issue. In such cases an intelligent identification of

similar requirements, both in the same project as well as in different projects, adds a

significant benefit to state-of-the-art requirements engineering tools.

4. Identification of related requirements in the same project. Projects usually consist out

of a large number of requirements. The identification of related requirements in those

large sets is a key feature for different real world scenarios. One famous scenarios is,

for instance, release planning, where it is essential to know which requirements are

related to other requirements. In this case, relatedness could be identified, for instance,

when two requirements are mentioning the same functionality.

B. Recommendations about improving the quality of requirements. In this case, the

recommendations are related to:

1. Measuring the quality of requirements to detect bad quality requirements. Given the

state-of-the-art presented in Section 2.2, we will focus on measuring quality aspects

related to: i) textual properties of the requirements (e.g., ambiguity, incompleteness,

redundancy), ii) structural properties of the requirements (e.g., conformance to

template), and iii) stakeholder-related properties (e.g., engagement and motivation).

2. Improving the quality of requirements. For instance, by offering suggestions about

rewording and standardized glossary to remove ambiguities and fill-in incomplete

information, corrective actions to structure the requirements according to templates (if

in use), and fostering stakeholders engagement through, for example, gamification

elements.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 33 of 53

To accomplish both points we will use information available from the current and

past projects, such as the textual representation of the requirements, their history, the

template used (if any), and stakeholders preferences.

C. Recommendations about requirement properties. The focus here is to predict properties of

requirements such as priority. For that matter, we will use the information available (i.e., the

requirement per se plus the values assigned to its properties) in past and current projects about

similar requirements to the one we want to recommend the requirement properties.

D. Recommendations about relevant stakeholders. Here, the recommendations aim at

detecting stakeholders who can cooperate on the definition of requirements. We differentiate

here two different scenarios: first, supporting the recommendation of stakeholders relevant for

a new software project (taking into account for this assignment the stakeholders’ workload or

the project domain, for instance), and second, supporting the recommendation of stakeholders

for a specific requirement (taking into account the requirements in which stakeholders

participated in past projects).

E. Context-aware recommendations. We aim to determine whether pull recommendations

(stakeholders trigger them when needed) or push recommendations (automatically delivered

to stakeholders) can be applied in a specific context. In general, context-aware

recommendations are based on additional information about, e.g., the stakeholder or the

project itself. In the case of the stakeholder, for instance, context information can be described

as the roles the stakeholder had in the past, the participation duration during each project, past

involvements of specific requirements, the skills, etc. In addition, based on historical data,

stakeholders might be proactively recommended (push) for specific tasks, or a specific

stakeholder pulls requirements that might fit.

3.2 Approach, algorithms, evaluation and technologies

In the following we describe the approach(es) (including algorithms) that will be used in each

one of the tasks introduced in subsection 3.1. Afterwards, the technologies used for the

stakeholders’ recommendations approach are presented.

3.2.1 Approach and algorithms

The OpenReq approach will achieve each of the personal recommendation tasks, presented in

Figure 4, as follows:

A. Recommendations about screening and relevant requirements

1. Screening of requirements. We will develop and evaluate content-based as well as

collaborative recommendation approaches while taking into account available

requirement metadata, such as for instance:

a) Title of the requirement,

b) Description of the requirement,

c) Tags (user entered tags as well as automatic generated tags),

d) Ratings from other stakeholders (in group settings), and

e) Postings.

The developed algorithms will be evaluated on predictive quality (for instance how

well the algorithms predict relevant requirements and related artefacts in the current

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 34 of 53

project context). Algorithm development will apply and extend existing

recommendation libraries such as Apache Mahout13.

2. Extraction of actual requirements. From the technical perspective, a binary classifier

(Manning 2014) will be used in combination with some basic Natural Language

Processing (NLP) techniques (Winkler 2016) (to identify common words in

requirements such as “must”, “have/has to”, etc.). For this we envision to use several

NLP techniques such as stopword removal, stemming, lemmatization, tense detection,

and bigrams detection.

Figure 4. Algorithms for personal recommendations in OpenReq

3. Identification of similar requirements. We will use a hybrid solution which makes use

of the advantages of content-based and collaborative recommender systems as well as

clustering learning techniques. The content-based recommender system will use tags,

title, description and postings of a requirement and the collaborative filtering

recommender system will use ratings from other stakeholders as input source. The

objective of the hybrid system is then to identify identical requirements in order to

remove duplicates as well as to detect similar requirements which can then be reused

in other projects. Furthermore, posting data (e.g., user comments of requirements) and

assessment data of requirements can also be taken into account in order to improve the

overall performance of the used approaches and the evaluation quality. We do not

13

 http://mahout.apache.org

http://mahout.apache.org/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 35 of 53

discard to combine this approach with the similarity detection that is being carried out

in T5.3, where similarity among requirements is identified from an NLP point of view

(for more information see deliverable D5.1).

4. Identification of related requirements. For this purpose, different approaches identified

in the state-of-the-art will be investigated. In the first approach, content-based (based

on semantic and text-based similarities) and collaborative recommendation approaches

(based on context information) will be used in a hybrid recommender taking into

account the available requirement metadata. The second approach is based on topic

modelling (Chien 2016), which can be used to associate a label / tag (i.e., a topic) to a

requirement or a subset of them, and then cluster the requirements in groups of related

ones. The clustering can be done at different level of granularities (e.g., a hierarchy of

topics), achieving different levels of relatedness.

The previous identification task can be improved by the use of: a) domain ontologies,

especially to identify synonyms that are domain-specific, and b) semantic models, to

specify how requirements are semantically related among each other.

B. Recommendations about improving the quality of requirements

1. Measuring the quality of requirements. A set of rules reflecting quality properties will

be identified from existing related work (see Section 3.1) and adapted to OpenReq.

These rules can then be used against requirements to check their quality, compounding

them to calculate a quality score. The majority of the approaches to identify quality

concerns leverage raw textual data (i.e., the requirement text itself). Therefore, NLP

techniques will be heavily utilized. Among those, text chunking (Arora 2015) and part-

of-speech tagging (Arora 2014) will be used to identify basic units of text. Later, the

units will be analysed to find, for example, usage of passive voice (considered a bad

quality indicator) (Femmer 2014), or missing information (e.g., an active verb missing

a direct object) (Baumer 2016). Another possible use of NLP is the resolution of

anaphora in the requirements text (Ferrari 2016) —i.e., identify references to the same

entity, but using different names, within the text. Similarly, NLP and statistical

machine learning algorithms (such as SVM and bayesian network) (del Sagrado 2017)

(Ott 2013) can be used to check conformance to requirements template. In addition,

the quality of the requirements can be further analysed through personal ratings of

stakeholders via several properties of the requirements, which could be used to improve

stakeholders engagement and motivation. However, this special aspect of quality will

be also dealt with in WP4.

2. Improving the quality of requirements. Simple word lists and thesauruses, together

with NLP techniques can be used to build recommenders that can point out

improvement actions on the basis of the previously defined rules. These improvement

actions vary accordingly to the complexity of the task. For the case of passive voice a

rewording in active voice can be done automatically (Eckhardt 2016) (e.g., for the

requirement in passive voice “Users should be alerted by the system when new

documents are assigned to them.”, the following rewording will be automatically

proposed “The system should alert users when new documents are assigned to them.”).

In contrast, for other cases (e.g., ambiguities resolution, or incomplete information

about a requirement) the recommender can only hint at the presence and location of a

quality concern but human intervention is likely to be required (e.g., filling-in

information gaps) (Eckhardt 2016). NLP techniques (e.g., text chunking) are used to

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 36 of 53

suggest how to fill-in missing information in requirements templates (Arora 2015).

Finally, as the state-of-the-art shows that stakeholders engagement plays an important

role in improving requirements quality, we will use gamification approaches (e.g.,

points, leaderboard and badges) to improve motivation (Dalpiaz 2015, 2017).

C. Recommendations about requirement properties

The state-of-the-art has lead us to identify several approaches that could be used for this task.

One approach is based on matching the requirement at hand (i.e., the requirement for which

we want to predict the property) with similar requirements that have already been defined in

past or ongoing projects, reducing this task to a similarity and relatedness detection case where

approaches presented in points A.3 and A.4 of this section can be used: one based on a hybrid

recommender combining collaborative and content-based techniques (possibly improved with

similarity NLP techniques, and one based on topic modelling. Alternatively, the

recommendation of each requirement property can be seen as a classification task with n

classes where machine learning approaches can be used to assign a value to the specific

property of a requirement (with a similar approach of that used in (Fitzgerald 2011)).

D. Recommendations about relevant stakeholders

The approach is based on using a content-based recommender that, by analysing existing social

networks (e.g., typical roles of stakeholders in past software projects), individual strengths of

stakeholders (e.g., topics the stakeholder has contributed to and related topics the stakeholder

could be interested in) and personal availabilities, will create a user profile that will be used to

match requirements to stakeholders (see, for instance, (Mooney 2004) and (Castro-Herrera

2009)). Furthermore, the approach will provide a ranking of recommended stakeholders based

on the amount of relevant topics (tags) matched as well as the time aspect. For example if a

stakeholder developed three Android applications in the last year, she will be ranked higher

than a developer whose last Android project was done five years ago. This content-based

recommender can be improved to take into account requirements topics in which stakeholders

have interest in, adapting the well-known weighting schemes used in collaborative filtering

techniques (Said 2012).

E. Context-aware recommendations

A context observer component will be integrated in OpenReq, which will take into account

contextual information to decide in a personalised way when, what, and in which way

recommendations will be delivered. For instance, we can use the history of the stakeholder

activities in using OpenReq to know if she is too busy to receive notifications on tips related

to requirements quality.

3.2.2 Evaluation

Evaluation is important in assessing the effectiveness of recommendation algorithms. Three

types of evaluations are available in the case of recommender systems (Beel 2013):

● Offline evaluations are based on historical data, e.g., a dataset that contains information

about how users previously rated movies. The effectiveness of recommendation

approaches is then measured based on how well a recommendation approach can

predict the users' ratings in the dataset. While a rating is an explicit expression of

whether a user liked a movie, such information is not available in all domains, which

will be the case of OpenReq. In such cases, offline evaluations may use implicit

measures of effectiveness. For instance, in the case of recommending related

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 37 of 53

requirements, it may be assumed that a RS is effective if it is able to recommend as

many requirements as possible that will be considered as related by a human.

● User studies involve from a few dozens to hundreds of users, who are confronted with

recommendations created by a recommender system. Possible tasks of the users in such

settings could be to judge which recommendations fit best or how good the

recommendations are. Besides the recommendation accuracy the quality of

recommendations can have many further different dimensions like for instance user

satisfaction with recommendation (or with a result in case of a decision process) and

user acceptance of a recommendation.

● In online evaluations (also known as A/B tests), recommendations are shown to

typically a large user group (up to thousands of users) of a real product or service. The

main goal of online evaluations is to test different recommendation approaches (for

example different recommendation heuristics). Therefore, in this case of evaluation,

the recommender system randomly picks at least two different recommendation

approaches (heuristics) to generate recommendations. The effectiveness is measured

with implicit measures of effectiveness such as conversion rate14 or click-through

rate15.

When evaluating the accuracy of ratings, the commonly used metrics are the mean absolute

error and root mean squared error (Gunawardana 2015). In contrast, when evaluating the

usage prediction (i.e., if the recommended items are useful/of interest to the user), metrics

from the information retrieval field can be used, such as precision, recall, F-measure or area

under the ROC curve (Gunawardana 2015). Recently, diversity, novelty, and coverage are also

considered important aspects in evaluation (Lathia 2010).

In OpenReq, we will mostly use offline evaluations with user studies, combined with metrics

from the information retrieval field. In addition, due to the recently criticism to reproducibility

in RS (Beel 2016), we will try to follow some of the advices given in this same publication to

make our evaluations as reproducible as possible. This is just a first plan for evaluation, and it

will probably evolve as the project progresses.

3.2.3 Technologies

The stakeholders’ recommendations will be based on a microservice architecture offering and

consuming RESTful services (see subsection 3.3). With that aim, several general technologies

will be used. For a more detailed description of the OpenReq relevant technologies we refer

to the deliverable D1.4.

In addition, we will need specific technologies for recommendation systems, classifications

and clustering, and NLP, which are described in subsections 3.2.3.1, 3.2.3.2, and 3.2.3.3,

respectively. These subsections contain a list of available technologies for the field. The final

technologies to be used in OpenReq will be chosen taking into account the type of license of

14

 Conversion rate is the proportion of users of a system who take action to go beyond a casual content view or

website visit, as a result of subtle or direct requests from marketers, advertisers, and content creators.
15

 Click-through rate is the ratio of users who explore a specific item (e.g., by clicking a link) to the number of

total users who were given the possibility to explore the item.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 38 of 53

the OpenReq system, so they are compliant with it. Finally, subsection 3.2.3.4 includes a

summary for technologies used.

3.2.3.1 Technologies for recommender systems

This section describes a tentative list of available packages and tools that could be used to

develop the personal recommendations for stakeholders in OpenReq:

● Apache Mahout16 (Apache License v2). This Java library supports a lot of collaborative

filtering algorithms. It is highly scalable, but content-based recommendation is not

supported by the library. The library is characterized by having a good documentation,

high performance, and maintainability.

● Apache PredictionIO17 (Apache License v2). It is a very active open source project that

provides a machine learning server that can be used to create a recommender system.

It supports both content-based and collaborative filtering. Additionally, it has a general

interface to develop other types of recommenders (such as knowledge-based).

● LibRec18 (GNU General Public License). LibRec is a Java based recommendation

engine with more than 70 kinds of recommendation algorithms. Specifically, these

algorithms can be divided into benchmark algorithms, collaborative filtering

algorithms, content-based algorithms, context-aware algorithms, hybrid algorithms

and other extended algorithms.

● LightFM19 (Apache License v2). It is an actively-developed Python implementation of

a number of collaborative- and content-based learning-to-rank recommender

algorithms. It easily scales up to very large datasets on multi-core machines.

● MyMediaLite20 (GNU General Public License). MyMediaLite is, comparable to

Apache Mahout, a recommendation library for collaborative filtering that runs on

.NET. It contains not that much algorithms than Apache Mahout but it supports two

commonly occurring collaborative filtering scenarios: 1) rating prediction (e.g., on a

scale of 1 to 5 stars), and 2) item prediction from positive-only feedback (e.g., from

clicks, likes, or purchase actions).

● RankSys21 (Mozilla Public License v2). It is Java recommendation system that includes

support for the evaluation and enhancement of novelty and diversity.

3.2.3.2 Technologies for classification and clustering

Several frameworks and libraries are already available for classification and clustering. In the

following, we introduce the most famous ones:

16

 http://mahout.apache.org/
17

 http://predictionio.incubator.apache.org/index.html
18

 https://www.librec.net/
19

 https://github.com/lyst/lightfm
20

 http://www.mymedialite.net
21

 https://github.com/RankSys/RankSys

http://mahout.apache.org/
http://predictionio.incubator.apache.org/index.html
https://www.librec.net/
https://github.com/lyst/lightfm
http://www.mymedialite.net/
https://github.com/RankSys/RankSys

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 39 of 53

● Apache Mahout22 (Apache License v2) includes a Java implementation for popular

machine learning algorithms for classification, clustering and topic modelling. The

library is highly scalable, and it is characterized by having a good documentation, high

performance, and maintainability.

● Scikit-learn23 (BSD license) offers a Python implementation of the most popular

machine learning algorithms for classification and clustering. The library is

characterized by an excellent documentation, high performance, ease of use and

maintainability. The drawbacks are scalability and heavy multiprocessing instead of

lightweight multithreading (due to Python GIL limitations - see

https://wiki.python.org/moin/GlobalInterpreterLock).

● Weka24 (GNU General Public License), developed in Java, supports diverse machine

learning approaches for classification, and clustering and attribute selection. In

addition to the graphical user interface provided, it can be accessed via a Java API.

3.2.3.3 Technologies for NLP

In the case of NLP, there are multiple libraries and toolkits that deal with a different variety of

techniques. Some of the most popular ones are:

● Nltk25 (Apache License v2), developed in Python, is used for NLP common tasks, such

as tagging, tokenizing, and stemming.

● Stanford CoreNLP26 (GNU General Public License v3+) is a popular NLP toolkit for

Java. Apart from the common NLP tasks, it supports advanced processing such as

named entity recognition, dependency analysis, and part-of-speech tagging. This

toolkit is still maintained by the Stanford NLP group.

● OpenNLP27 (Apache License v2) is a Java API that supports the most common NLP

tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named

entity extraction, chunking, parsing, language detection and coreference resolution.

● Word2Vec28 (Apache License v2) is an algorithm developed by (Mikolov 2013) at

Google to assign arbitrary-length vectors to words that correspond to the meaning of

the word. The vectors created depend on the corpus used, therefore it is important to

know which corpus was used when working with a set of word vectors.

It is important to highlight here the fact that OpenReq project will not only deal with English

language, but also with Italian and German, since the telecom trial deals with text written in

the Italian language and, for the case of Siemens, with text (partially) written in the German

language. This diversity of languages used to write the text analyzed is a challenge for the

22

 http://mahout.apache.org/
23

 http://scikit-learn.org/
24

 http://www.cs.waikato.ac.nz/ml/weka/
25

 http://www.nltk.org/
26

 https://stanfordnlp.github.io/CoreNLP/
27

 https://opennlp.apache.org/
28

 https://code.google.com/archive/p/word2vec/

https://wiki.python.org/moin/GlobalInterpreterLock
http://mahout.apache.org/
http://scikit-learn.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.nltk.org/
https://stanfordnlp.github.io/CoreNLP/
https://opennlp.apache.org/
https://code.google.com/archive/p/word2vec/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 40 of 53

project. The majority of the existing NLP approaches target the English language, as they are

trained and validated using English text corpora. Although NLP approaches and software

libraries exist for the other two languages (Basili 2015) (Rehbein 2012), their performances

(e.g., precision) might be inferior compared to the well-established, English-based ones.

3.2.3.4 Technologies for context-awareness

The technologies used for context-aware recommendations depend on the technologies used

for the final platform as we will rely on interaction and history data. The following summarizes

technologies that can be used und reviewed during the project:

● MyLyn29/Eclipse Usage Data Collector30. An interesting data source for context-aware

recommendations is interaction data. Interaction data describes the usage by tracing

the events happening in the system (e.g., the user clicks in a UI element, the systems

receives a notification). MyLyn and Eclipse are examples of existing tools which can

be instrumented to collect interaction data, in this case, in the Eclipse Integrated

Development Environment. Data gathered from these tools can help to understand how

a system is used and on what tasks a user is performing. Recommendations, based on

such context data, can be given, for example, to optimize a task (e.g., complete a task

with fewer clicks).

3.2.3.5 Technologies summary

The applied technologies will be based on micro-service architecture. Apart from the general

technologies stated in D1.4, the technologies below will be utilized:

● Recommender system framework. At least one of the following will be used (we do

not discard to enlarge this list in the future): Apache Mahout, Apache Prediction IO,

LibRec, LightFM, MyMediaLite, and RankSys.

● Classification and clustering framework. One of the following will be tentatively used:

Apache Mahout, Scikit-learn, and Weka.

● NLP framework. One of the following will be tentatively used: Nltk, Stanford

CoreNLP, OpenNLP, and Word2Vec.

● Context-awareness framework. One of the following will be tentatively used: MyLyn,

and Eclipse Usage Data Collector.

Generally, we will apply or expand the algorithms and capabilities of these technologies rather

than develop entire new ones. In addition, we do not discard that some technology is added to

this list, especially in terms of the frameworks used for recommender systems, classification

and clustering, NLP, and context-awareness. Finally, we want to highlight that the final choice

of technologies will be done taking into account the type of license of the OpenReq system,

so the technologies used in this workpackage are compliant with it.

29

 https://www.eclipse.org/mylyn/
30

 https://www.eclipse.org/org/usagedata/

https://www.eclipse.org/mylyn/
https://www.eclipse.org/org/usagedata/

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 41 of 53

3.3 Architecture

This subsection describes the planned software architecture for the software services that

realize the stakeholders’ recommendations approach. These services are collectively called

stakeholders’ recommender engine. Subsection 3.3.1 describes the general context of the

stakeholders’ recommender engine, and subsection 3.3.2 the architecture overview.

3.3.1 Context of the stakeholders’ recommender engine

A view of the context in which the stakeholders’ recommender engine operates is shown in

Figure 5. As can be seen, the engine can be used in different RE tasks.

Figure 5. Context of the stakeholders’ recommender engine

The stakeholder role that interacts with the stakeholders’ recommender engine will be usually

a requirements engineer. Requirement engineers are responsible for eliciting, analysing, and

managing the requirements, including the properties and relationships of the requirements.

This task is assisted by the Requirements intelligence engine (WP2), which is in charge, among

others, of the data and text mining of the requirements, and the Dependency engine (WP5),

which is in charge of detection of requirements dependencies, requirements tracing, and

resolution of conflicts to repair inconsistent requirements. More information about both

engines can be found in deliverables D2.1 and D5.1, respectively.

The stakeholders’ recommender engine operates in the context of other systems, namely

Requirement Management Systems (RMS), as shown in Figure 5. In general, as thought in

Openreq, the requirements are stored in the RMS. However, in some cases (e.g., for Siemens trial

partner) the requirements will be automatically extracted out of a tender document and stored later

in the RMS. In such cases, a document will be sent to the stakeholders’ recommender engine

through the RMS, and analysed by this engine to extract the requirements.

Figure 5 depicts the two key RE tasks for which the stakeholders’ recommender engine offers

assistance:

1. Requirements specification. During this task, the requirements engineer will receive

recommendations about the screening of requirements, relevant requirements,

improvement suggestions on the quality of requirements, and properties of

requirements, giving place to the addition of requirements or the modification of the

requirements and their properties.

2. Stakeholder assignment. New stakeholders for the requirement being edited will be

recommended, giving place to new stakeholders’ assignments. This assignment will be

done not only to detect the stakeholders that could better contribute to a requirement,

but also to increase stakeholders’ engagement in RE tasks.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 42 of 53

In addition, the stakeholders’ recommender engine will have a context-observer component

that will be used to monitor the behaviour of the stakeholders in the RMS. This context

information will be used by the rest of the recommendations tasks provided inside the

stakeholders’ recommender engine.

3.3.2 Architecture overview of the stakeholders’ recommender engine

Figure 6 presents an overview of the architecture for the stakeholders’ recommender engine

that will be part of OpenReq. However, this architecture will probably evolve as the

implementation progresses.

As it can be seen in Figure 6, we follow a microservice architecture. We have organized the

microservices in two layers: the recommendation layer and the data layer. In addition, we

have considered the possible interactions of the services of the engine with services of other

work packages. In the following, we discuss each layer in a separate subsection as well as the

relation with other microservices.

Figure 6. Architecture overview of the stakeholders’ recommender engine

3.3.2.1 Recommendation layer

This layer is the interface to the frontend of OpenReq and includes all the microservices related

to the different stakeholders’ recommendations tasks that have been identified in subsection

3.1. We differentiate five components (one for each task in the DoA, i.e., T3.2, T3.3, T3.4,

T3.5 and T3.6), and eight microservices. Specifically, the numeration of each microservice

and component in this layer (Figure 6) follows the same numeration as in subsection 3.1, and,

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 43 of 53

therefore, each microservice and component implements the tasks introduced for its

corresponding explanation in subsection 3.1.

The only thing to highlight in this layer is that microservices A3. Similar and A4. Related will

communicate with the service of WP5, called Milla, which will provide, among other things,

the existent dependencies among requirements. These dependencies, which also include the

type similar, will help to provide the recommendations about similar and related requirements

in microservices A3 and A4, respectively.

3.3.2.2 Data layer

All microservices in this layer (Figure 6) have the goal to persist the raw data necessary to run

the microservices of the recommendation layer but also to store some intermediate results of

the recommendation layer for easier and faster execution (e.g., avoid training a machine

learning model every time it is needed). Figure 7 includes an initial overview of how the data

will be organized — i.e., the data model for the stakeholders’ recommender engine. As with

the architecture, we do not discard that this model will evolve as the implementation

progresses. The data model presented in Figure 7 is compliant with the first version of the

OpenReq ontology presented in deliverable D5.1. Further details about the mapping of the

data model in Figure 7 and the OpenReq ontology will be presented in further deliverables

(specifically, in D5.4).

Part 1 of the model is formed by the raw data necessary to run the microservices of the

recommendation layer. That includes information about the requirements projects (i.e.,

Project, Requirement, Requirement Property, and Dependency), from where this data came

from (in case it was imported to the system) (i.e., Issue, Social Media, and Requirement File),

and the stakeholders involvement (i.e.., Stakeholder, Participation31, and Requirement

Rating). The information about Requirement and Requirement Property will come from the

Milla microservice of WP5, while the information Issue, Social Media, and Requirement File

will come from the Issues Tracker Data, Social Media Data and Requirement Files

microservices of WP2. Part 2 of the model includes intermediate results of the

recommendation layer. This part of the model, together with the services of this layer, are

explained in the following paragraphs.

Data Manager microservice

This microservice is the entry point for the storage and retrieval of data, orchestrating all the

actions needed in relation to these tasks (i.e., this microservice will decide what should be

done and what other services to use from this layer). On one hand, it routes data from the

recommendation layer to the appropriate microservice. On the other, it stores the data used by

recommender systems and machine learning algorithms in the recommendation layer. From a

data model perspective (see Figure 7), Part 1 of the model represents such abstracted data. The

Data Manager helps decoupling the raw data from the models data. One challenge is that the

Data Manager needs to be updated once a new type of machine learning model needs to be

persisted.

31

 Participation refers to the intervention of a Stakeholder in a Project to rate the Requirement Properties of a

Requirement.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 44 of 53

Figure 7. Data entity relationship model of the Data layer

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 45 of 53

Machine Learning Models microservice

This microservice avoids re-computing machine learning models needed by the

recommendation layer. From a data perspective (see Figure 7), it stores the results of a machine

learning algorithm in the appropriate entity — Classification, Cluster, or Machine Learning

Model. The Classification entity stores data related to classification operations of the

Requirement (e.g., requirements classification as actual requirements). Note that the model

allows to classify the requirements according to different properties. Accordingly, Cluster will

store information regarding automatically identified groups of requirements (e.g.,

requirements concerning the same topic). Finally, Machine Learning Model stores the results

of a generic machine learning model that may operate on its own, or by using groups of clusters

or classes of requirements.

Processed Data microservice

This microservice stores the machine learning features for training the machine learning

models extracted from the requirements. This avoids, together with the Machine Learning

Models microservice, re-computing the entire input when new data is received. Therefore,

only the new data need to be processed. This approach brings flexibility in creating and testing

new models in case the parameters or the algorithm itself needs to change. From a data

perspective (see Figure 7), this microservice stores and provides the Parameter Value (e.g.,

the confidence level) with which the Machine Learning Models have been computed. Such

approach decouples the input data relative to the OpenReq requirements data from the model

specific input. This microservice depends on the type of machine learning models used in the

recommendations layer.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 46 of 53

4 SUMMARY

In this deliverable we have presented the strategy devised to build the stakeholders’

recommender engine to cover the expectations of the OpenReq project and its intended

platform. Such results come from the development of Task 3.1 (Design stakeholders’

recommendations approach).

First, we presented the state-of-the-art for recommender systems and requirements quality

improvements. This state-of-the-art was carried out following two systematic mappings and

includes the relevant results that could be of interest for developing the stakeholders’

recommendation approach.

Afterwards, we summarized the recommendations tasks that the stakeholders’ recommender

engine is going to embrace, and gave details about the algorithms that will be used for each

one of them. In a nutshell, we will implement a hybrid recommendation system which will

combine classical recommendation techniques (such as content-based and knowledge-based

techniques) with text mining, clustering and classification techniques.

In addition, we briefly introduced some evaluation mechanisms and metrics. The stakeholders’

recommender engine will mostly be validated using offline evaluations with user studies, and

metrics from the information retrieval field (e.g., precision and recall), trying to make our

evaluations as reproducible as possible.

Finally, we proposed a microservice architecture for the engine, divided into two layers (i.e.,

recommendation layer and data storage layer), to enable highly decoupled software

components, where each component will only focus on a small set of tasks. The components

will expose their APIs, which can be used by third parties or by other components of the

OpenReq platform.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 47 of 53

5 REFERENCES

Adamopoulos P., and Tuzhilin, A. Recommendation opportunities: improving item prediction

using weighted percentile methods in collaborative filtering systems.7th ACM conference on

Recommender systems, ACM, 2013.

Adomavicius G., and Tuzhilin A. Toward the Next Generation of Recommender Systems: A

Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. on Knowl. and Data Eng.,

17(6), pp. 734–749, 2005.

Adomavicius G., Tuzhilin A. Context-Aware Recommender Systems. Book chapter in

Recommender Systems Handbook. Springer, 2011.

Aggarwal C.C., and Zhai C. An Introduction to Text Mining. In: Aggarwal C., Zhai C. (eds)

Mining Text Data. Springer, 2012.

Alan S., Jain B.J., and Albayrak S. Analyzing weighting schemes in collaborative filtering:

cold start, post cold start and power users. 27th Annual ACM Symposium on Applied

Computing, ACM, 2012.

Antoniol G., Ayari K., Di Penta M., Khomh F., and Guéhéneuc Y.G. Is it a bug or an

enhancement?: a text-based approach to classify change requests. Proceedings of the IBM

Centre for Advanced Studies Conference on Collaborative Research, 2008.

Anvik J., Hiew L., and Murphy, G.C. Who should fix this bug? ACM/IEEE International

Conference on Software Engineering, pp. 361–370, 2006.

Arora C., Sabetzadeh M., Briand L., and Zimmer F. Automated checking of conformance to

requirements templates using natural language processing. IEEE transactions on Software

Engineering, 41(10), pp. 944-968, 2015.

Arora C., Sabetzadeh M., Briand L., and Zimmer F. Improving requirements glossary

construction via clustering: approach and industrial case studies. 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, 2014.

Baltrunas L., and Ricci F. Experimental evaluation of context-dependent collaborative

filtering using item splitting. User Model User-Adap. Inter, 2014.

Basile P., Caputo A., and Semeraro G. Semantic vectors: an information retrieval scenario.

Proceedings of the First Italian Information Retrieval Workshop (IIR), 2010.

Basili R., Bosco C., Delmonte R., Moschitti A. and Simi M. Harmonization and development

of resources and tools for Italian natural language processing within the PARLI Project.

Springer, 2015.

Basu C., Hirsh H., and Cohen W. Recommendation as classification: using social and content-

based information in recommendation. 15th National Conference on Artificial Intelligence

(AAAI’98), pp. 714–720, 1998.

Baeumer F.S., and Geierhos M. Running Out of Words: How Similar User Stories Can Help

to Elaborate Individual Natural Language Requirement Descriptions. International Conference

on Information and Software Technologies, pp. 549-558, 2016.

Beel J., Genzmehr M., Gipp B. A Comparative Analysis of Offline and Online Evaluations

and Discussion of Research Paper Recommender System Evaluation. Workshop on

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 48 of 53

Reproducibility and Replication in Recommender Systems Evaluation (RepSys) at the ACM

Recommender System Conference (RecSys), 2013.

Beel J., Breitinger C., Langer S., Lommatzsch A., and Gipp B. Towards reproducibility in

recommender-systems research. User modeling and user-adapted interaction, 26.1, pp. 69-101,

2016.

Bell R.M., Bennett J., Koren Y., and Volinsky C. The million dollar programming prize. IEEE

Spectrum, vol. 46, no. 5, pp. 28-33, 2009.

Bernardes D., Diaby M., Fournier R., Soulié F.F., and Viennet E. A Social Formalism and

Survey for Recommender Systems. SIGKDD Explor. Newsl., 16(2), pp.20-37, 2015.

Berry D.M., and Kamsties E. Ambiguity in requirements specification. Perspectives on

Software Requirements, pp. 7–44, 2004.

Berry D.M., Kamsties E., and Krieger M.M. From Contract Drafting to Software

Specification: Linguistic Sources of Ambiguity. Retrieved from

http://www.osel.co.uk/papers/ambiguityhandbook.pdf. 2003.

Breese J.S., Heckerman D., and Kadie C.M. Empirical analysis of predictive algorithms for

collaborative filtering. 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52,

pp. 1998.

Bucchiarone A., Gnesi S., Lami G., Trentanni G., Fantechi A.: QuARS Express - A Tool

Demonstration. 23rd IEEE/ACM International Conference on Automated Software

Engineering (ASE’08), 2008.

Burke R., Hammond K.J., and Young B.C. Knowledge-based navigation of complex

information space. 13th National Conference on Artificial Intelligence (AAAI ’96), pp. 462–

468, 1996.

Burke R. Knowledge-Based Recommender Systems. Encyclopedia of Library and Information

Systems, vol. 69, 2000.

Burke R. Hybrid recommender systems: survey and experiments. User modeling and user-

adapted interaction, 12(4), pp. 331–370, 2002.

Campos P.G., Díez F., and Cantador, I. Time-aware recommender systems: A comprehensive

survey and analysis of existing evaluation protocols. User Modeling and User Model User-

Adap. Inter., 2014.

Castro-Herrera C., Cleland-Huang J., and Mobasher B. Enhancing Stakeholder Profiles to

Improve Recommendations in Online Requirements Elicitation. 17th IEEE International

Requirements Engineering Conference (RE’09), pp. 37–46, 2009.

Castro-Herrera C., and Cleland-Huang J. Utilizing Recommender Systems to Support

Software Requirements Elicitation. 2nd International Workshop on Recommendation Systems

for Software Engineering (RSSE’10), ACM, 2010.

Chien J.T. Hierarchical Theme and Topic Modeling. IEEE Transactions on Neural Networks

and Learning Systems. 27, pp. 565–578, 2016.

Cleland-Huang J., Dumitru H., Duan C., and Castro-Herrara C. Automated support for

managing feature requests in open forums. Communications of the ACM - A View of Parallel

Computing, 52(10), pp. 68–74, 2009.

http://www.osel.co.uk/papers/ambiguityhandbook.pdf

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 49 of 53

Cubranic D., and Murphy G.C. Automatic bug triage using text categorization. 16th

International Conference on Software Engineering & Knowledge Engineering, pp. 92–97,

2004.

Dalpiaz F., Snijders R., Brinkkemper S., Hosseini M., Shahri A., and Ali R. Engaging the

crowd of stakeholders in requirements engineering via gamification. Gamification, pp. 123-

135, Springer International Publishing, 2017.

de Gemmis M., Lops P., Musto C., Narducci F., Semeraro G. Semantics-Aware Content-Based

Recommender Systems. Book Chapter in Recommender Systems Handbook, Springer, pp.

119-159, 2015.

del Sagrado J., and del Águila I.M. Stability prediction of the software requirements

specification, Software Quality Journal, pp.1-21, 2017.

DeVries B., and Cheng B.H. Automatic detection of incomplete requirements via symbolic

analysis. ACM/IEEE 19th International Conference on Model Driven Engineering Languages

and Systems, pp. 385-395, 2016.

DeVries B., and Cheng, B.H. Automatic Detection of Incomplete Requirements Using

Symbolic Analysis and Evolutionary Computation. International Symposium on Search Based

Software Engineering, pp. 49-64, 2017.

Di Lucca G.A., Di Penta M., and Gradara S. An Approach to Classify Software Maintenance

Requests. IEEE International Conference on Software Maintenance, pp. 93-102, 2002.

Dooms S. Dynamic generation of personalized hybrid recommender systems. 7th ACM

conference on Recommender systems, ACM, 2013.

Dumitru H., Gibiec M., Hariri N., Cleland-Huang J., Mobasher B., and Castro-Herrara C. On-

demand feature recommendations derived from mining public product descriptions. 33rd

International Conference on Software Engineering, pp. 181-19, 2011.

Eckhardt J., Vogelsang A., Femmer H., and Mager P. Challenging incompleteness of

performance requirements by sentence patterns. IEEE 24th International Requirements

Engineering Conference (RE), pp. 46-55, 2016.

Ekstrand M.D., Riedl J.T., and Konstan J.A. Collaborative filtering recommender systems.

Foundations and Trends® in Human–Computer Interaction, 4.2, pp.81-173, 2011.

Engelhardt, Paul E., and Fernanda Ferreira. "Processing coordination ambiguity." Language

and speech 53.4, pp. 494-509., 2010.

Felfernig A., Friedrich G., Jannach D., and Zanker M. An integrated environment for the

development of knowledge-based recommender applications. International Journal of

Electronic Commerce 11, no. 2, pp. 11–34, 2006.

Felfernig A., Friedrich G., Schubert M., Mandl M., Mairitsch M., and Teppan, E. Plausible

repairs for inconsistent requirements. 19th International Joint Conference on Artificial

Intelligence (IJCAI’09), pp. 791–796, 2009.

Felfernig A., Schubert M., Reiterer S. Personalized diagnosis for over-constrained problems.

International Joint Conference on Artificial Intelligence, pp. 1990–1996, 2013.

Felfernig A., Jeran M., Ninaus G., Reinfrank F., Reiterer S., and Stettinger M. Basic

Approaches in Recommendation Systems. Chapter in Recommendation Systems in Software

Engineering, Springer, Berlin, Heidelberg, 2014.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 50 of 53

Femmer H., Fernández D.M., Juergens E., Klose M., Zimmer I., and Zimmer J. Rapid

requirements checks with requirements smells: two case studies. 1st International Workshop

on Rapid Continuous Software Engineering (RCoSE 2014), pp. 10–19, 2014.

Fernández-Tobías I., Braunhofer M., Elahi M., Ricci F., and Cantador I. Alleviating the new

user problem in collaborative filtering by exploiting personality information. User Modeling

and User-Adapted Interaction, 26(2-3), pp.221-255, 2016.

Ferrari A., Spoletini P., and Gnesi S. Ambiguity Cues in Requirements Elicitation Interviews.

IEEE 24th International Requirements Engineering Conference (RE), pp. 56–65, 2016.

Ferrari A., Donati B., and Gnesi S. Detecting Domain-Specific Ambiguities: An NLP

Approach Based on Wikipedia Crawling and Word Embeddings. IEEE 25th International

Requirements Engineering Conference Workshops (REW), pp. 393–399, 2017.

Fitzgerald C., Letier E., and Finkelstein A. Early failure prediction in feature request

management systems. IEEE 19th International Requirements Engineering Conference

(RE’11), pp. 229-238, 2011.

Gaeul J., Sunghun K., and Zimmermann T. Improving bug triage with bug tossing graphs.

European Software Engineering Conference, pp. 111–120, 2009.

Gleich B., Creighton O., and Kof L. Ambiguity detection: Towards a tool explaining

ambiguity sources. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 218–232, 2010.

Gunawardana A., Shani G. Evaluating Recommender Systems. In: Ricci F., Rokach L.,

Shapira B. (eds) Recommender Systems Handbook. Springer, Boston, MA. 2015.

Guy I. Social recommender systems. Recommender Systems Handbook, Springer US, pp.511-

543, 2015.

Hofmann T. Latent Semantic Models for Collaborative Filtering. ACM Trans. Information

Systems, 22(1), pp. 89-115, 2004.

Huertas C., Gómez-Ruelas M., Juárez-Ramirez R., and Plata H. A formal approach for

measuring the lexical ambiguity degree in natural language requirement specification:

Polysemes and Homonyms focused. International Conference on Uncertainty Reasoning and

Knowledge Engineering (URKE), vol. 1, pp. 115–118, 2011.

Hussein T., Linder T., Gaulke W., and Ziegler J. Hybreed: A software framework for

developing context-aware hybrid recommender systems. User Modeling and User-Adapted

Interaction, 24(1-2), pp. 121-174, 2014.

Jannach D., Zanker M., Felfernig A., and Friedrich G. Recommender systems: An

introduction. Cambridge University Press, 2010.

Juergens E., Deissenboeck F., Feilkas M., Hummel B., Schaetz B., Wagner S., and Streit J.

Can clone detection support quality assessments of requirements specifications? 32nd

International Conference on Software Engineering, Vol. 2, pp. 79-88, 2010.

Kumar M., Ajmeri N., and Ghaisas S. Towards Knowledge Assisted Agile Requirements

Evolution. 2nd International Workshop on Recommendation Systems for Software

Engineering, pp. 16–20, 2010.

Lamkanfi A., Demeyer S., Giger E., and Goethals B. Predicting the severity of a reported bug.

Mining Software Repositories, pp. 1–10, 2010.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 51 of 53

Lamkanfi A., Demeyer S., Soetens Q.D., and Verdonck, T. Comparing mining algorithms for

predicting the severity of a reported bug. Proceedings of the European Conference on

Software Maintenance and Reengineering, pp. 249–258, 2011.

Lathia N., Hailes S., Capra L., Amatriain X. Temporal diversity in recommender systems. 33rd

International ACMSIGIR Conference on Research and Development in Information Retrieval

(SIGIR 2010), pp. 210–217, 2010.

Lim S., and Finkelstein A. Stakerare: Using social networks and collaborative filtering for

large-scale requirements elicitation. IEEE Trans. on Softw. Eng., 38(3), pp. 707-735, 2012.

Linden G., Smith B., and York, J. Amazon.com recommendations: Item-to-item collaborative

filtering. IEEE Internet Comput, 7(1), pp. 76–80, 2003.

Lombriser P. (2015). Engaging Stakeholders in Scenario-Based Requirements Engineering

with Gamification. Master's thesis.

Lucassen G., Dalpiaz F., van der Werf J.M.E., amd Brinkkemper S. Forging high-quality user

stories: towards a discipline for agile requirements. IEEE 23rd International Requirements

Engineering Conference (RE), pp. 126-135, 2015.

Manning C.D., Surdeanu M., Bauer J., Finkel J., Bethard S.J., McClosky D.: The Stanford

CoreNLP Natural Language Processing Toolkit. In: Association for Computational Linguistics

(ACL) System Demonstrations, pp. 55–60, 2014.

Massey A.K., Rutledge R.L., Antón A.I., Hemmings J.D., and Swire P.P. A Strategy for

Addressing Ambiguity in Regulatory Requirements. Retrieved from

https://smartech.gatech.edu/bitstream/handle/1853/54573/ambiguity2.pdf?sequence=1&isAll

owed=y. 2015.

McCarey F., Ó Cinnéide M., and Kushmerick, N. RASCAL: A recommender agent for agile

reuse. Artif. Intell. Rev, 24(3–4), pp. 253–276, 2005.

Melville P., Mooney R.J., and Nagarajan R. Content-Boosted Collaborative Filtering for

Improved Recommendations. 18th National Conference on Artificial Intelligence (AAAI), pp.

187–192, 2002.

Menzies T., AND Marcus, A. Automated severity assessment of software defect reports. IEEE

International Conference on Software Maintenance, pp. 346–355, 2008.

Meuth R.J., Robinette P., and Wunsch D.C. Computational intelligence meets the NetFlix

prize. EEE International Joint Conference on Neural Networks (IEEE World Congress on

Computational Intelligence), pp. 686-691, 2008.

Mikolov T., Sutskever I., Chen K., Corrado G.S., and Dean J. Distributed Representations of

Words and Phrases and their Compositionality. Retrieved from

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-

compositionality. 2013.

Mooney R., and Roy L. Content-based book recommending using learning for text

categorization. 5th ACM conference on Digital libraries (DL '00), ACM, pp. 195-204, 2000.

Musto C. Enhanced vector space models for content-based recommender systems. 4th ACM

conference on Recommender systems, ACM, 2010.

https://smartech.gatech.edu/bitstream/handle/1853/54573/ambiguity2.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/54573/ambiguity2.pdf?sequence=1&isAllowed=y
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 52 of 53

Nagwani N.K., and Verma S. Predicting expert developers for newly reported bugs using

frequent terms similarities of bug attributes. International Conference on ICT and Knowledge

Engineering, pp. 113–117, 2012.

Ninaus, G., Felfernig, A., Stettinger, M., Reiterer, S., Leitner, G., Weninger, L., & Schanil, W.

INTELLIREQ: intelligent techniques for software requirements engineering. In Proceedings

of the Twenty-first European Conference on Artificial Intelligence (pp. 1161-1166). IOS

Press, 2014.

Olga Baysal M. W., and Cohen G.R. A Bug You Like: A Framework for Automated

Assignment of Bugs. 17th International Conference on Program Comprehension (ICPC ’09),

pp. 297–298, 2009.

Ott D., and Raschke A. Evaluating benefits of requirement categorization in natural language

specifications for review improvements. Technical report, 2013.

Pennock D., Horvitz E., Lawrence S., and Giles C.L. Collaborative filtering by personality

diagnosis: A hybrid memory- and model-based approach. 16th Conference on Uncertainty in

Artificial Intelligence (UAI ’00), pp. 473–480, 2000.

Petersen K., Feldt R., Mujtaba S., and Mattsson M. Systematic Mapping Studies in Software

Engineering. 12th international conference on Evaluation and Assessment in Software

Engineering (EASE), vol. 8, pp. 68-77, 2008.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. A design science research

methodology for information systems research. Journal of management information systems,

24(3), 45-77, 2007.

Rashid A., Albert I., Cosley D., Lam S., McNee S., Konstan J., and Riedl J. Getting to know

you: Learning new user preferences in recommender systems, 7th International Conference on

Intelligent User Interfaces (IUI ’02), ACM, pp.127–134, 2002.

Rehbein I., Ruppenhofer J., Sporleder C., and Pinkal M. Adding nominal spice to SALSA -

frame-semantic annotation of German nouns and verbs. Conference on Natural Language

Processing (KONVENS), 2012.

Ricci F., Rokach L., and Shapira B.. Recommender systems: Introduction and challenges.

Recommender Systems Handbook, Springer US, pp. 1-34, 2015.

Romero-Mariona J., Ziv H., and Richardson D. J. SRRS: A Recommendation System for

Security Requirements. International Workshop on Recommendation Systems for Software

Engineering, 2004.

Sabriye A.O.J., and Zainon W.M.N.W. A framework for detecting ambiguity in software

requirement specification. IEEE 8th International Conference on Information Technology, pp.

209–213, 2017.

Said A., Jain B.J., Albayrak S. Analyzing Weighting Schemes in Collaborative Filtering: Cold

Start, Post Cold Start and Power Users. ACM Symposium on Applied Computing (SAC),

2012.

Swinney D.A. Lexical access during sentence comprehension: (Re)consideration of context

effects. Journal of Verbal Learning and Verbal Behavior, 18(6), pp.645–659, 1979.

Tan P.N., Steinbach M, and Kumar V. Cluster Analysis: Basic Concepts and Algorithms. Book

chapter in Introduction to Data Mining, Addison-Wesley, 2005a.

D3.1 OpenReq Approach for Stakeholders’ Recommendations

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 53 of 53

Tan P.N., Steinbach M, and Kumar V. Classification: Basic Concepts, Decision Trees, and

Model Evaluation. Book chapter in Introduction to Data Mining, Addison-Wesley, 2005b.

Tso-Sutter K.H.L., Marinho L.B., and Schmidt-Thieme L. Tag-aware recommender systems

by fusion of collaborative filtering algorithms. 2008 ACM Symposium on Applied Computing

(SAC ’08), ACM, pp. 1995–1999, 2008.

Unterkalmsteiner M., and Gorschek T. Requirements Quality Assurance in Industry: Why,

What and How? International Working Conference on Requirements Engineering: Foundation

for Software Quality (REFSQ), pp. 77-84, 2017.

Verma M., Srivastava M, Chack N., Diswar A.K., and Gupta N. A comparative study of

various clustering algorithms in data mining. International Journal of Engineering Research

and Applications (IJERA, 2(3), pp. 1379–1384, 2012.

Verstrepen K., and Goethals B. Top-N recommendation for shared accounts. P9th ACM

Conference on Recommender Systems, ACM, 2015.

Weiß C., Premraj R., Zimmermann T., and Zeller, A. How Long Will It Take to Fix This Bug?.

4th Working Conference on Mining Software Repositories (MSR'07), 2007.

Wilmink M., and Bockisch C. On the ability of lightweight checks to detect ambiguity in

requirements documentation. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 10153 LNCS, pp.

327–343, 2017.

Wilson W.M., Rosenberg L. H., and Hyatt L.E. Automated analysis of requirement

specifications. 19th international conference on Software engineering (ICSE), pp. 161–171,

1997.

Winkler J., Vogelsang A. Automatic Classification of Requirements Based on Convolutional

Neural Networks. IEEE 24th International Requirements Engineering Conference Workshops

(REW’16), 2016.

Yang H., Willis A., De Roeck A., Nuseibeh B., and De Roeck A. Automatic detection of

nocuous coordination ambiguities in natural language requirements. IEEE/ACM international

conference on Automated software engineering (ASE), pp. 53–62, 2010.

Zhang Y., and Pennacchiotti M. Recommending branded products from social media. 7th

ACM conference on Recommender systems, ACM, 2013.

