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Abstract: This deliverable presents version 1 of the stakeholders’ recommendations engine in 

OpenReq. Specifically, it defines the architecture, design and future work (when applicable) 

for the tasks related to the screening and recommendation of relevant requirements (T3.2), the 

recommendations for improving requirements quality (T3.3) and the prediction of requirement 

properties (T3.4). It also includes the current state of deployment and integration of version 1 

of the engine, together with the challenges and solutions faced during its development. 
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This document has been produced in the context of the OpenReq Project. The OpenReq project 

is part of the European Community's h2020 Programme and is as such funded by the European 

Commission. All information in this document is provided "as is" and no guarantee or 

warranty is given that the information is fit for any particular purpose. The user thereof uses 

the information at its sole risk and liability. For the avoidance of all doubts, the European 

Commission has no liability is respect of this document, which is merely representing the 

authors view.  
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1 INTRODUCTION 

One of the stated objectives of the OpenReq project is to design an approach for assisting 

individual stakeholders in different requirements-related tasks such as defining, reusing, 

screening, understanding, evaluating, and ensuring quality. After identifying the tasks to be 

covered by the stakeholders’ recommender engine in the deliverable D3.1 - OpenReq 

Approach for Stakeholders’ Recommendations and in (Palomares et al, 2013), the following 

stage was to concretize the architecture and design of these tasks, followed by their subsequent 

development. 

In this deliverable we show the architecture, design and current development status of the tasks 

that are part of version 1 of the stakeholders’ recommender engine, those being: 

● the screening and recommendation of relevant requirements (T3.2) (Section 2),  

● the recommendations for improving requirements quality (T3.3) (Section 3), and  

● the prediction of requirement properties (T3.4) (Section 4). 

As stated in deliverable D1.2 - Requirements analysis and design document, the functionalities 

have been designed and implemented as microservices. Therefore, the design of these tasks 

covers, for each microservice, an explanation of the functionality behind the service, its 

sequence diagram and a usage example. 

In addition, this deliverable covers also two further aspects of version 1 of this engine: 

● the current state of its deployment and integration (Section 5), and 

● the challenges faced during its design, implementation, development and integration, 

together with the solutions to overcome such challenges (Section 6). 

Finally, Section 7 presents a summary of the work reported in this deliverable 
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2  SCREENING AND RECOMMENDATION OF RELEVANT 

REQUIREMENTS 

The major aim of this task is to reduce the overall effort in a RE process. A typical RE project 

often contains requirements that are related or similar to requirements that appear in other RE 

projects. Related or similar requirements cross RE projects often occur due to language 

constraints, legal regulations, and company guidelines for the look and feel of software products 

or different domain definitions. Consequently, such similar or related requirements appear to be 

good candidates to be recommended to the requirements manager in order to be included as 

additional requirements. This way, the effort to manually define such requirements can be 

reduced as well as more completeness of requirements can be achieved, i.e., the probability that 

the requirements manager oversees relevant requirements can be decreased. Hence, this task 

focuses on the detection and recommendation of relevant requirements. 

In order to find relevant requirements, mainly, content-based recommendation and 

classification techniques are exploited. 

2.1 Architecture 

The architecture of the personal stakeholders’ recommendation engine was already presented 

in deliverable D3.1 (Section 3.3.2). At that moment, we envisaged four microservices for task 

T3.2. However, at the end, the functionalities in this task have been covered using five 

microservices: a recommendation microservice and four microservices that compose a 

classifier component. 

The requirements recommendation engine used by the official OpenReq prototype, which 

consists of an NLP pipeline and a clustering component, is delivered as two microservices. It 

covers the mentioned steps in deliverable D3.1 for task T3.2: A1 (screening), A3 (similarity 

check), and A4 (related requirements detection). This is simply due to the reason that for this 

microservice, the implementation of A1, A3 and A4 makes use of the same set of libraries in 

order to perform the aforementioned NLP tasks as well as the clustering approaches. 

Consequently, it turns out that a separation of these steps would not be reasonable and would 

introduce further implementation overhead and increase the implementation effort. 

The classifier component (composed of 4 microservices) covers A2 (extraction of 

requirements). The design of this component also implied small changes in the “Intermediate 

results” layer of the Data entity relationship model (Figure 7 of D3.1), due to the classifier 

component provided by it (microservices corresponding to the Classifier component presented 

in the following Sections 2.2.3 to 2.2.6 of this deliverable). Figure 1 contains an excerpt of the 

data entity relationship model with the modifications. Specifically, the modifications consisted 

of: 

● The name of the Classification and Cluster classes have been updated into 

Classification Model and Cluster Model, respectively, to represent more accurately 

their meaning. 

● Due to an error detected in the original model, now Classification Model and Cluster 

Model inherit from Machine Learning Model. 

● The cardinality of the associations between Machine Learning Model and 

Classification Model, and between Machine Learning Model and Cluster Model has 

been changed to 0..1 in  both extremes of the associations. 
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● The Classification Model class has now two new attributes, company and files. 

Company represents the organization to which the requirement used to create the 

classification pertains (e.g., Qt), and files correspond to sequential files that actually 

contain the classification model. 

● In the Classification Model class, the value attribute has been deleted and moved to the 

new association classified. 

● A new association classified has been added between Classification Model and 

Requirement, which represents the requirements that have been classified with this 

classifier. An associative class Classification is derived from this association, which 

contains the property value that has been assigned by the classifier to this requirement. 

 

 
Figure 1. Data entity relationship model excerpt of the Data layer (only the part that contains 

modifications with respect to the one presented in deliverable D3.1) 
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2.2 Design of current functionalities 

2.2.1 similar-requirement-recommender 

i. Description 

 

The mission of this task consists in the detection and recommendation of similar requirements 

by analysing requirements from other (past) RE projects. From an architectural point of view, 

the whole recommendation process includes several steps. 

Besides some meta-data of requirements (such as explicitly defined skills required to solve the 

requirement), as main criteria to find relevant requirements, the title and description of 

requirements are taken into account. Given a detailed description and a title of every 

requirement, NLP techniques are applied to extract their relevant features. Thereby, the text is 

split into tokens and noisy data is removed (i.e., data cleaning). Next, stop words such as 

prepositions or articles, which do not represent valuable information of a requirement, are 

removed as well. After that, lemmatization is applied to the remaining tokens to reduce the 

number of tokens that share the same meaning. This way, undesired ambiguity-related issues 

caused by the same word appearing as plural and singular words, as verbs in different tenses, 

can be counteracted. Since each remaining token represents a feature, the number of features 

is reduced as well. This results in a less complex and more flexible recommendation model. 

Finally, the current NLP pipeline computes the TF-IDF (Term Frequency and Inverse 

Document Frequency) values of all remaining tokens, and these values are then used as 

features. 

In the next phase, clustering is applied to group similar requirements based on the pre-

processed tokens. Moreover, to better tackle the ambiguity of words (i.e., polysemy) 

appropriate (soft) clustering techniques such as Latent Semantic Analysis (LSA) are exploited. 

The recommendation system is based on hard-clustering in terms of hierarchical clustering as 

well as soft clustering in terms of LSA. Similar requirements that lie in the close proximity in 

the vector/latent space are then considered as candidates to be recommended to the 

requirements manager by the recommender system.  

This microservice includes an internal offline training to fit the model (see next section for 

more details). 

ii. Sequence diagram 
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iii. Example usage 
 

URL /tugraz/similar-requirement-recommender 

Method POST 

URL params None 

Data params { 

      "id": 1, 

      "title": "Speed Measurement", 

      "description" : "As evaluation after a workout, the average speed must be 

shown. The following statistics should be displayed: average speed, maximum 

speed. This requires a time measurement, distance measurement, and a storage unit 

for storing the data." 

} 

Returns [{ 

      "id": "28", 

      “title”: “Distance Measurement” 

      "description" : "For statistical purposes, a distance measurement is necessary 

which requires data from a GPS sensor. This data is needed for the evaluation 

software and therefore stored in memory." 

}, 

...] 

Return 

explanation 

This service returns a list of similar requirements to the given requirement (input 

requirement). The requirements in the list follow the same format as the input 

requirement.  

 

2.2.2 related-requirement-recommender 

i. Description 

 

The microservice for detecting related requirements follows more or less the same structure as 

the microservice for detecting similar requirements (see Section 2.2.1). The underlying 

clustering approach differs slightly from the microservice that is about detecting similar 

requirements. In contrast to the microservice which detects similar requirements, where the 

focus lies on detecting requirements which have a bigger overlap (duplicate), the related 

requirements recommendation approach focuses on finding related requirements based on the 

same context information. 

ii. Sequence diagram 
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iii. Example usage 
 

URL /tugraz/related-requirement-recommender 

Method POST 

URL params None 

Data params { 

      "id": 1, 

      "title": "Speed Measurement", 

      "description" : "As evaluation after a workout, the average speed must be 

shown. The following statistics should be displayed: average speed, maximum 

speed. This requires a time measurement, distance measurement, and a storage unit 

for storing the data." 

} 

Returns [{ 

      "id": "13", 

      “title”: “GPS” 

      "description" : "To capture position data, a GPS sensor should be used. 

Through the measured position and time information, the speed and the distance 

can be measured." 

}, 

...] 
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Return 

explanation 

This service returns a list of related requirements to the given requirement (input 

requirement). The requirements in the list follow the same format as the input 

requirement. 

 

2.2.3 classifier-component/train 

i. Description 

The goal of the train microservice is to train a classifier to assign values to a property. In the 

context of the requirements recommendation engine, the property is isReq, and it represents 

whether a piece of text is an actual requirement or other information (not representative for 

the requirements engineering stage of a software project) (similar to identifying whether a 

piece of text is a bug or not in (Antoniol et al., 2008)). 

The microservice creates, for the requirements contained in the array received as parameter, 

the files that represent a classifier that uses these requirements for  training and stores these 

files inside a classification model for the company and property received as parameter. 

Specifically, these files are: dictionary, frequency, label-index and model. The classifier 

corresponds to a Naive Bayes classifier. The file creation is done using Mahout1.  

Right now, the name of the company and the property are used as primary key on the database. 

Therefore, it is not possible to have more than one classifier for the same company and 

property. 

 

ii. Sequence diagram 

 

                                                 

 

 
1
 https://mahout.apache.org/  

https://mahout.apache.org/
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iii. Example usage 
 

URL /upc/classifier-component/train 

Method POST 

URL params None 

Data params { 

     "requirements" :[ 

     { 

      "id": "4523", 

      "property_value": "Prose"2, 

      "text" : "Reports and correspondence" 

     }, 

     { 

      "id": "1039", 

      "property_value": "DEF"3, 

      "text" : "Sufficient number of parking spaces must be provided 

close to the office." 

     } ], 

    "company": "Siemens", 

    "property": "isReq" 

} 

Returns None 

 

2.2.4 classifier-component/classify 

i. Description 

 

The classify microservice assigns values to a requirement property given the case that a 

classifier was already trained. The information about the classifier is stored in a database in a 

Classification Model entity (using as primary keys the name of the company to which pertains 

the requirement used to train the classifier and the property it tries to predict). In this case, the 

property is isReq (see section 2.2.3 for its definition). 

The microservice creates first an entity of type Classifier by recovering from the database 

connected to the data layer the training files for the specific company and property (which are 

received as parameter). Afterwards, it uses this classifier to classify (i.e., assign a property 

value to) the requirements received as parameter. 

 

ii. Sequence diagram 

                                                 

 

 
2
 Prose is the label that represents other information different from an actual requirement (i.e., information not 

representative for the requirements engineering stage of a software project) 
3
 DEF is the label that represents a piece of text is an actual requirement 
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iii. Example usage 
 

URL /upc/classifier-component/classify 

Method POST 

URL params None 

Data params { 

"requirements" :[ 

     { 

      "id": "5432", 

      "text" : "Construction Site" 

     }, 

     { 

      "id": "10030", 

      "text" : "Contractor must arrange the Construction Site in 

accordance with Articles 133 and 134 of the Building Act and Commission 

Regulation (EC)" 

     } ], 

              "company": "Siemens", 

              "property": "isReq" 

} 

Returns  "recommendations": [ 

        { 

            "requirement": “5432”, 

            "property_value": "Prose", 

            "confidence": 93.44250563767345 

        }, 

        { 

            "requirement": “10030”, 

            "property_value": "DEF", 

            "confidence": 93.79632918450244 

        } 

    ] 

} 

Return 

explanation 

The output of this microservice indicates for each requirement received in the input 

and the indicated property and company, the value predicted for the property.  

In the example above, two requirements with id’s 5432 and 10030 are received in 

the input, the property to be predicted is isReq (i.e., the piece of text is an actual 

requirement or not) and the name of the company is Siemens. The microservice 

returns that the requirement with id 5432 is supposed to be prose (which makes sense 

because its text seems to be kind of the head of a section), and that the requirement 

10030 is supposed to be a requirement (i.e., DEF) (which makes sense because the 

piece of text is establishing a constraint of the regulation to be used). In addition, the 

confidence value of the prediction of each property is returned (i.e., the closer to 100 

the confidence is, the more certain is the classifier on the prediction done). 
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2.2.5 classifier-component/update 

i. Description 

 

The update microservice updates an existing classifier, which is used to assign values to a 

requirement property. The information about the classifier is stored in a Classification Model 

entity in a database (using as primary keys the name of the company to which pertains the 

requirement used to train the classifier and the property it tries to predict). In this case, the 

property is isReq (see section 2.2.3 for its definition). 

For doing so, the microservice creates, for the requirements contained in the array received as 

parameter, the files that represent a classifier that uses these requirements for training.  

Specifically, these files are: dictionary, frequency, label-index and model. Afterwards, it 

replaces in the database connected to the data layer the training files for the specific company 

and property (which are received as parameter). The files creation is done using Mahout1.  

 

ii. Sequence diagram 



D3.2 Recommender Engine - Version 1 

 

 

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE     Page 17 of 35 



D3.2 Recommender Engine - Version 1 

 

 

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE     Page 18 of 35 

iii. Example usage 
 

URL /upc/classifier-component/update 

Method POST 

URL params None 

Data params { 

     "requirements" :[ 

     { 

      "id": "4523", 

      "property_value": "Prose", 

      "text" : "Reports and correspondence" 

     }, 

     { 

      "id": "1039", 

      "property_value": "DEF", 

      "text" : "Sufficient number of parking spaces must be provided 

close to the office." 

     } ], 

              "company": "Siemens", 

              "property”: “isReq” 

} 

Returns None 

 

2.2.6 classifier-component/train&test 

i. Description 

 

The train&test microservice returns the result of the k-cross-validation4 (k received as 

parameter) using as set of requirements the ones received as parameter.  

The microservice splits the set of requirements received as parameter in k groups. Then, for 

each group, trains a Naive Bayes classifier with all the requirements received as parameters 

except the ones in the group, and next, it tests the classifier with the requirements that are in 

the group. This test returns several statistical measures. After all the test for the k groups have 

been executed, the microservice returns the average of all the statistical measures. Specifically, 

these measures are:  

● Accuracy. Statistic that measures the rate of correctly classified instances (i.e., true 

positives and true negatives) with respect to the number of classified instances. 

                                                 

 

 
4
 Cross-validation is a technique to evaluate predictive models by partitioning the original sample into a training 

set to train the model, and a test set to evaluate it. In k-cross-validation, the original sample is randomly 

partitioned into k equal size subsamples. 
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● Weighted precision. The precision of a label is the rate of true positives with respect to 

the sum of true positives and false positives. The weighted precision measures the 

precision of all the labels taking into account their appearance (e.g., if 60% of the 

instances have label A and 40% have label B, the weighted precision is 

0.4*precision_A + 0.6*precision_B). 

● Weighted recall. The recall of a label is the rate of true positives with respect to the 

sum of true positives and false negatives. The weighted recall is calculated following 

the same principle explained in the weighted precision. 

● Weighted f1 score. The f1 score of a label is the is the harmonic mean of precision and 

recall. The weighted f1 score is calculated following the same principle explained in 

the weighted precision. 

● Kappa. Statistic that measures the relationship between “accuracy” v.s. “random 

classification”. 

● Reliability. Statistics that measures the overall consistency, i.e., having a high 

reliability means that the produced results are similar under consistent conditions. 

● Reliability (std deviation). Standard deviation of the reliability across the k tests. 

The classifier corresponds to a Naive Bayes classifier. The classifier creation and test is done 

using Mahout1.  

 

ii. Sequence diagram  
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iii. Example usage 
 

URL /upc/classifier-component/train&test 

Method POST 

URL params None 

Data params { 

    “requirements" :[ 

     { 

      "id": "4523", 

      "property_value": "Prose", 

      "text" : "Reports and correspondence" 

     }, 

              { 

      "id": "100147", 

      "property_value": "DEF", 

      "text" : " Contractor shall submit Progress Reports" 

     }, 

              { 

      "id": "1004", 

      "property_value": "Prose", 

      "text" : "STATIC SWITCHING" 

     }, 

     { 

      "id": "1039", 

      "property_value": "DEF", 

      "text" : "Sufficient number of parking spaces must be provided 

close to the office." 

     } ], 

             "k": "2" 

} 

Returns { 

 "kappa": "0,3238", 

 "accuracy": "78,4608", 

 "reliability": "52,8879", 

 "reliability_std_deviation": "0,4581", 

 "weighted_precision": "0,907", 

 "weighted_recall": "0,7846", 

 "weighted_f1_score": "0,8243" 

} 

Return 

explanation 

Returns the statistic measures of the k-cross-validation done with the information 

received in the input (basically, the id of the text, the text, and the property value 

(i.e., label) assigned to the text. 

2.3 Future work 

Future work regarding the requirements recommendation service (see Section 2.2.1 and 2.2.2) 

will go beyond the limits of LSA and include the consideration of word2vec and doc2vec 
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representations of words. That way, a more descriptive characteristic representation of the 

words can be used. This representation can be exploited in combination with clustering to 

improve the prediction performance of the generated model (see Lau et al. 2016). 

Furthermore, the existing content-based recommender can be extended such that the 

aggregated/estimated utility of the requirements evaluated by different stakeholders is taken 

into account. 

Future extensions of the requirements recommendation services will also be able to identify 

bug reports based on an entered comment of a user. This can be achieved by using name-entity 

recognition to look for similar bugs. In addition, it will also be able to identify individual 

requirements, i.e., it will be able to separate a text (e.g., a sentence containing more than one 

requirement) into individual requirements. The classification service could also take into 

account the context in which the requirement is (for instance, the placement of the requirement 

in a specific document and section). 

Other extensions of the microservices will also present a list of prioritized recommendations 

to the users as well as allow the users (humans) to give feedback on the presented 

recommendations (i.e., retrain the models based on the human feedback).  

Finally, at the implementation level, the microservices need to be adapted to the new standard 

input JSON defined inside OpenReq, which was delivered too close to M18 as to update the 

microservices. 
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3 RECOMMENDATION FOR IMPROVING REQUIREMENTS QUALITY 

All of the “recommendation for improving requirements quality” APIs are designed to give 

quick suggestions on how to improve the quality of natural language requirements using 

different NLP techniques. 

3.1 Architecture 

The APIs for recommendation for improving requirements quality are nested under two 

microservices, accessible at “/hitec/prs-improving-requirements-quality” and 

“/upc/reqquality/check-conformance-to-templates”. Each API has its own endpoint, listed below 

with the respective description. The APIs do not talk to each other, and they do not interact 

with any other microservices (OpenReq or otherwise). When a call is made to one of the prs-

improving-requirements-quality endpoints, a Python script is run against the given 

requirements passed in the JSON body to the API, and the Python script returns a simple JSON 

object with the recommendations for improving requirements quality. 

3.2 Design of current functionalities  

3.2.1 prs-improving-requirements-quality/check-lexical 

i. Description 

 

The check-lexical microservice checks individual words and simple word combinations 

against a lexicon built from previous research (Tjong and Berry 2013), to test for ambiguities. 

These ambiguities include dangerous plurals, imprecise words, weak words, pronoun misuse, 

and more. 

 

ii. Sequence diagram 

 
iii. Example usage 

 

URL /hitec/prs-improving-requirements-quality/check-lexical 

Method POST 

URL params None 

Data params { 

  "requirements": [ 

    { 
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      "id": 1, 

      "elements": [ 

        { 

          "id": 1, 

          "name": "description", 

          "text": "This is actually a good requirement.", 

          "created_at": 1526385600 

        } 

      ], 

      "status": "new", 

      "created_at": 1526385600 

    } 

  ] 

} 

Returns [ 

  { 

    "1": { 

      "1": [ 

        { 

          "text": "good", 

          "title": "Vague", 

          "description": "These vague words and symbols are likely to introduce 

ambiguity.", 

          "index_start": 19, 

          "index_end": 23 

        } 

      ] 

    } 

  } 

] 

Return 

explanation 

This endpoint returns a list of ambiguities for each element under each requirement. 

Each ambiguity contains the text that was identified as ambiguous, the title of the 

ambiguity, the description of the ambiguity, and the index_start and index_end that 

can be used to programmatically identify where the ambiguity exists within the 

original element (which is necessary since a single sentence may have multiple 

duplicate words, and not all of them may be ambiguous). 

 

3.2.2 prs-improving-requirements-quality/check-regexps 

i. Description 

 

The check-regexps API checks word combinations and phrases using a lexicon of regular 

expressions built from previous research (Gleich et al. 2010), to test for ambiguities. These 

ambiguities include unclear inclusion, ambiguous plurals, and  unclear associativity, among 

others. 

 

ii. Sequence diagram 
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iii. Example usage 

 

URL /hitec/prs-improving-requirements-quality/check-regexps 

Method POST 

URL params None 

Data params { 

  "requirements": [ 

    { 

      "id": 1, 

      "elements": [ 

        { 

          "id": 1, 

          "name": "description", 

          "text": "The system shall read HTML and PDF or DOC files.", 

          "created_at": 1526385600 

        } 

      ], 

      "status": "new", 

      "created_at": 1526385600 

    } 

  ] 

} 

Returns [ 

  { 

    "1": { 

      "1": [ 

        { 

          "text": "and PDF or", 

          "title": "Unclear Associativity", 

          "description": "The combination of “and” and “or” leads to unclear 

associativity.", 

          "index_start": 27, 

          "index_end": 37 

        } 

      ] 
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    } 

  } 

] 

Return 

explanation 

This endpoint returns a list of ambiguities for each element under each requirement. 

Each ambiguity contains the text that was identified as ambiguous, the title of the 

ambiguity, the description of the ambiguity, and the index_start and index_end that 

can be used to programmatically identify where the ambiguity exists within the 

original element (which is necessary since a single sentence may have multiple 

duplicate words, and not all of them may be ambiguous). 

 

3.2.3 prs-improving-requirements-quality/check-pos-regexps 

i. Description 

 

The check-pos-regexps API checks word combinations and phrases using a lexicon of regular 

expressions designed to be run against natural language texts that have been converted to 

include their part-of-speech (POS) tags (Gleich et al. 2010). The combination of both POS 

tagging and regular expressions allows much more complicated ambiguities to be identified 

such as adjectives, adverbs, and passive ambiguity. 

 

ii. Sequence diagram 

 
iii. Example usage 

 

URL /hitec/prs-improving-requirements-quality/check-pos-regexps 

Method POST 

URL params None 

Data params { 

  "requirements": [ 

    { 

      "id": 1, 

      "elements": [ 

        { 

          "id": 1, 

          "name": "description", 
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          "text": "The system will be tested.", 

          "created_at": 1526385600 

        } 

      ], 

      "status": "new", 

      "created_at": 1526385600 

    } 

  ] 

} 

Returns [ 

  { 

    "1": { 

      "1": [ 

        { 

          "text": "be tested", 

          "title": "Passive Ambiguity", 

          "description": "Authors should state requirements in active form, as passive 

conceals who is responsible for the action.", 

          "index_start": 25, 

          "index_end": 16 

        } 

      ] 

    } 

  } 

] 

Return 

explanation 

This endpoint returns a list of ambiguities for each element under each requirement. 

Each ambiguity contains the text that was identified as ambiguous, the title of the 

ambiguity, the description of the ambiguity, and the index_start and index_end that 

can be used to programmatically identify where the ambiguity exists within the 

original element (which is necessary since a single sentence may have multiple 

duplicate words, and not all of them may be ambiguous). 

3.3 Future work 

The microservice check-conformance-to-templates remains to be developed. It will check that 

the text of a requirement follow one of the requirement templates defined inside the 

microservice. For doing so, the requirements will be first converted to include their part-of-

speech (POS) tags (Gleich et al. 2010). 

In addition, we will develop a microservice that will measure the quality of the requirements, 

in the sense that the microservice will turn a quality score between 0 and 1 (being 1 the 

representation of “perfect quality”). Implicit in what we have developed so far, quality can be 

measured by the amount of suggestions returned by the current microservices (for instance, if 

100 out of 400 words in a requirement document are ambiguous, the document would be 

assigned a quality score of 0.75). In the future, we are looking to deliver a microservice that 

does this assignment explicitly, with a complete picture of all the quality metrics.   

We are also conducting a systematic mapping study of requirement improvement algorithms, 

which will lead to additional algorithms that can be developed and integrated into this set of 

APIs. Additionally, with a complete picture of the state-of-the-art in requirement improvement 
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algorithms, we are looking to make advances in this area to contribute to both OpenReq as an 

implementation, and the research community as published research. Therefore, some services 

might be enhanced afterwards. For instance, the check-conformance-to-templates service 

could be enlarged with new identified templates. 

Additionally, efforts towards improving requirements quality are being implemented in the 

form of stakeholder engagement and topic extraction. These projects mark extensions to the 

original, intended functionality offered for recommendations for improving requirements 

quality, and will be implemented in the coming months. 
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4 PREDICTING REQUIREMENT PROPERTIES 

The goal of all the “predicting requirements properties” microservices is to give 

recommendations on the possible value of different properties of requirements. For each one 

of the properties, different techniques will be tested to see which one provides better results.  

Some of the properties are well-known in the requirements literature (e.g., risk and priority), 

while others are specific for the trials cases. Specifically, the properties that are particular for 

the trials are: 

● Component (for the Qt trial), which is a part of a software project. In the case of Qt, 

there is only one software project, so it is the part of the software to which the 

requirement is related (e.g., Bluetooth, Wifi, and NFC). 

● Environment (for the Qt trial), which is the operating system in which the requirement 

should work on (e.g., Windows, Linux or Symbian). 

● Compliant (for the Siemens trial), which represents if the requirement can be fulfilled 

with an existing solution, if an existing solution needs modifications/adaptations to 

fulfil the requirement, or if a new technical solution is needed. 

● Domain (for the Siemens trial), which represents the department that should evaluate5 

the requirement (similar to the maintenance teams used in (Di Luca et al., 2002). 

● Technical solution (for the Siemens trial), which represents the existing solution that 

might fulfil the requirement. 

4.1 Architecture 

At the moment of handing out this deliverable, the architecture of this task only needs the 

modifications presented in Section 2.1; no extra modifications are needed with respect to the 

architecture presented in deliverable D3.1. 

4.2 Design of current functionalities 

The first approach we are using for the prediction of properties is based on a Naive-Bayes 

multi-valued classifier (i.e., the groups of the classifier are more than two). Therefore, we are 

using the same microservices of the Classifier component defined in subsections 2.2.3 to 2.2.6 

to train, classify, update and train&test the classifier, respectively. The only difference is that 

for each property, the name of the property is passed to the train, classify and update services 

in the parameter property. For instance, in the case of the Priority property, the parameter 

property would receive the string priority. 

4.3 Future work 

This task finishes in M24, so this is just a first version of the functionalities. Up to now, the 

recommendation of each requirement property has been approached as a classification task 

with n classes. This task can also be seen as a similarity and relatedness problem, where the 

                                                 

 

 
5
 In the case of the Siemens trial, they work with bid projects. For the requirements engineering stage, these 

means that the requirements are already stated, and they have to evaluate if the requirements (already stated in 

the bid project) can be fulfilled by the company, how much effort would it take, and so on. 



D3.2 Recommender Engine - Version 1 

 

 

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE     Page 31 of 35 

requirement at hand (i.e., the requirement for which we want to predict the property) is 

matched with similar or related requirements that have already been defined in past or on-

going projects. Therefore, we aim to test other approaches that reduce this task to a similarity 

and relatedness detection case:  

● one based on a hybrid recommender combining collaborative and content-based 

techniques as well as clustering learning techniques (possibly improved with similarity 

NLP techniques) (similar to the one used to identify similar and related requirements 

in Section 2.2.1 and 2.2.2), and  

● one based on topic modelling (Chien 2016), which can be used to associate a label / 

tag (i.e., a topic) to a requirement or a subset of them, and then cluster the requirements 

in groups of related ones. The clustering can be done at different level of granularities 

(e.g., a hierarchy of topics), achieving different levels of relatedness. 
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5 DEPLOYMENT AND INTEGRATION 

The requirements recommendation microservices (see Section 2) are currently in the final 

testing phase and will thereafter be deployed on the ENG infrastructure. Some of the 

microservices of the requirements recommender (the ones in Section 2.2.1 and 2.2.2) are 

already called by the official OpenReq prototype as well as the outcomes presented in the user-

interface. 

The prs-improving-requirements-quality microservices (see Sections 3.2.1, 3.2.2, and 3.2.3) 

are all deployed on the ENG infrastructure. They can be accessed adding 

http://openreq.esl.eng.it/ to the URL shown in the explanation of the microservices. The 

integration of the functionality offered by this microservice is in progress, currently on hold 

due to delays in the final stage of deployment. We expect the functionalities will be integrated 

soon into the OpenReq UI. 

  



D3.2 Recommender Engine - Version 1 

 

 

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE     Page 33 of 35 

6 CHALLENGES AND SOLUTIONS 

In this section we describe the challenges we encountered and the solutions selected during 

the development and testing phase. 

6.1 Deployment difficulties 

Challenge: Deployment on the ENG infrastructure was slower than expected. 

Solution: Constant contact with ENG personnel to address the issues. 

6.2 Lack of experience with Mahout 

Challenge: During the development of the classifier component (Sections 2.2.3 to 2.2.6), 

several problems related to its implementation with Mahout appeared (some of them due to 

the lack of experience of the development team with Mahout). For instance, the train&test 

microservice was giving pretty bad results, due to the fact that the classifier was not using the 

proper files for dictionary and frequency. In addition, there was a bug caused by using the   

categories (i.e., property_values) randomly. 

Solution: A lot of time spent looking at documentation; similar problems and solutions 

investigated in public forums. 

6.3 Mahout integration 

Challenge: Mahout usually is installed in a server. However, we wanted to integrate the 

Mahout component inside the classifier component. That way, no external installation of 

Mahout was needed in the deployment server (easing the deployment stage). 

Solution: Similar problems and solutions investigated in public forums; integration of Mahout 

as much as possible inside the classifier component, creating a small installation guide for the 

remaining steps that could not be automatized. 
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7 SUMMARY 

In this deliverable we have presented the architecture, design and future work of the current 

functionalities of the version 1 of the stakeholders’ recommender engine. Such version covers 

a part of Task 3.2 (Screening and recommendation of relevant requirements), T3.3 

(Recommendation for improving requirements quality) and T3.4 (Predicting requirements 

properties).  

For each one of the tasks covered for the version 1 of the stakeholders’ recommender engine, 

we have described: 1) its architecture (i.e., whether modifications have been needed with 

respect to the architecture presented in deliverable D3.1); 2) its design (i.e., for each one of the 

microservices, we presented a description its sequence diagram(s), and an example of usage); 

and, 3) the future work. The only task that has needed changes in the architecture is T3.2, 

where small changes have been necessary in the data entity model to cover unforeseen needs 

of the task. The future work of these tasks mainly encompasses the implementation of some 

nice-to-have functionalities and also improvements on the already developed functionalities. 

Afterwards, we summarized the current state of deployment and integration of the current 

functionalities. In a nutshell, three of the microservices have been deployed (those ones 

presented in Sections 3.2.1, 3.2.2, and 3.2.3), and two microservices have been integrated in 

the OpenReq UI (the ones presented in Section 2.2.1 and 2.2.2). Problems arose in the ENG 

deployment infrastructure that have slowed the deployment and integration of the services, but 

mitigation actions have been taken place which will speed up the deployment process. 

Finally, we also briefly described the challenges faced, and the solutions applied to solve them. 

They are mainly related to deployment issues, to the use of Mahout in the classifier component 

(the one presented from Section 2.2.3 to 2.2.6), and to the difficulty to achieve further 

extensions of the current functionalities. 
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