

Project co-funded by the European Commission under the
H2020 Programme.

Grant Agreement nº 732463

Project Acronym: OpenReq

Project Title:
Intelligent Recommendation Decision Technologies for

Community-Driven Requirements Engineering

Call identifier: H2020-ICT-2016-1

Instrument: RIA (Research and Innovation Action

Topic ICT-10-16 Software Technologies

Start date of project January 1st, 2017

Duration 36 months

D3.2 Recommender Engine - Version 1

Lead contractor:

UPC

Author(s): HITEC, TUGraz, UPC

Submission date: June 2018

Dissemination level: PU

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 2 of 35

Abstract: This deliverable presents version 1 of the stakeholders’ recommendations engine in

OpenReq. Specifically, it defines the architecture, design and future work (when applicable)

for the tasks related to the screening and recommendation of relevant requirements (T3.2), the

recommendations for improving requirements quality (T3.3) and the prediction of requirement

properties (T3.4). It also includes the current state of deployment and integration of version 1

of the engine, together with the challenges and solutions faced during its development.

This document by the OpenReq project is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Unported License.

This document has been produced in the context of the OpenReq Project. The OpenReq project

is part of the European Community's h2020 Programme and is as such funded by the European

Commission. All information in this document is provided "as is" and no guarantee or

warranty is given that the information is fit for any particular purpose. The user thereof uses

the information at its sole risk and liability. For the avoidance of all doubts, the European

Commission has no liability is respect of this document, which is merely representing the

authors view.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 3 of 35

Table of Contents

1 INTRODUCTION .. 4

2 SCREENING AND RECOMMENDATION OF

RELEVANT REQUIREMENTS 5

2.1 Architecture .. 5

2.2 Design of current functionalities ... 7

2.2.1 similar-requirement-recommender .. 7

2.2.2 related-requirement-recommender .. 9

2.2.3 classifier-component/train .. 11

2.2.4 classifier-component/classify .. 13

2.2.5 classifier-component/update ... 16

2.2.6 classifier-component/train&test .. 18

2.3 Future work .. 22

3 RECOMMENDATION FOR IMPROVING

REQUIREMENTS QUALITY 24

3.1 Architecture .. 24

3.2 Design of current functionalities ... 24

3.2.1 prs-improving-requirements-quality/check-lexical 24

3.2.2 prs-improving-requirements-quality/check-regexps 25

3.2.3 prs-improving-requirements-quality/check-pos-regexps 27

3.3 Future work .. 28

4 PREDICTING REQUIREMENT PROPERTIES 30

4.1 Architecture .. 30

4.2 Design of current functionalities ... 30

4.3 Future work .. 30

5 DEPLOYMENT AND INTEGRATION 32

6 CHALLENGES AND SOLUTIONS.............................. 33

6.1 Deployment difficulties .. 33

6.2 Lack of experience with Mahout .. 33

6.3 Mahout integration .. 33

7 SUMMARY .. 34

8 REFERENCES ... 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 4 of 35

1 INTRODUCTION

One of the stated objectives of the OpenReq project is to design an approach for assisting

individual stakeholders in different requirements-related tasks such as defining, reusing,

screening, understanding, evaluating, and ensuring quality. After identifying the tasks to be

covered by the stakeholders’ recommender engine in the deliverable D3.1 - OpenReq

Approach for Stakeholders’ Recommendations and in (Palomares et al, 2013), the following

stage was to concretize the architecture and design of these tasks, followed by their subsequent

development.

In this deliverable we show the architecture, design and current development status of the tasks

that are part of version 1 of the stakeholders’ recommender engine, those being:

● the screening and recommendation of relevant requirements (T3.2) (Section 2),

● the recommendations for improving requirements quality (T3.3) (Section 3), and

● the prediction of requirement properties (T3.4) (Section 4).

As stated in deliverable D1.2 - Requirements analysis and design document, the functionalities

have been designed and implemented as microservices. Therefore, the design of these tasks

covers, for each microservice, an explanation of the functionality behind the service, its

sequence diagram and a usage example.

In addition, this deliverable covers also two further aspects of version 1 of this engine:

● the current state of its deployment and integration (Section 5), and

● the challenges faced during its design, implementation, development and integration,

together with the solutions to overcome such challenges (Section 6).

Finally, Section 7 presents a summary of the work reported in this deliverable

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 5 of 35

2 SCREENING AND RECOMMENDATION OF RELEVANT

REQUIREMENTS

The major aim of this task is to reduce the overall effort in a RE process. A typical RE project

often contains requirements that are related or similar to requirements that appear in other RE

projects. Related or similar requirements cross RE projects often occur due to language

constraints, legal regulations, and company guidelines for the look and feel of software products

or different domain definitions. Consequently, such similar or related requirements appear to be

good candidates to be recommended to the requirements manager in order to be included as

additional requirements. This way, the effort to manually define such requirements can be

reduced as well as more completeness of requirements can be achieved, i.e., the probability that

the requirements manager oversees relevant requirements can be decreased. Hence, this task

focuses on the detection and recommendation of relevant requirements.

In order to find relevant requirements, mainly, content-based recommendation and

classification techniques are exploited.

2.1 Architecture

The architecture of the personal stakeholders’ recommendation engine was already presented

in deliverable D3.1 (Section 3.3.2). At that moment, we envisaged four microservices for task

T3.2. However, at the end, the functionalities in this task have been covered using five

microservices: a recommendation microservice and four microservices that compose a

classifier component.

The requirements recommendation engine used by the official OpenReq prototype, which

consists of an NLP pipeline and a clustering component, is delivered as two microservices. It

covers the mentioned steps in deliverable D3.1 for task T3.2: A1 (screening), A3 (similarity

check), and A4 (related requirements detection). This is simply due to the reason that for this

microservice, the implementation of A1, A3 and A4 makes use of the same set of libraries in

order to perform the aforementioned NLP tasks as well as the clustering approaches.

Consequently, it turns out that a separation of these steps would not be reasonable and would

introduce further implementation overhead and increase the implementation effort.

The classifier component (composed of 4 microservices) covers A2 (extraction of

requirements). The design of this component also implied small changes in the “Intermediate

results” layer of the Data entity relationship model (Figure 7 of D3.1), due to the classifier

component provided by it (microservices corresponding to the Classifier component presented

in the following Sections 2.2.3 to 2.2.6 of this deliverable). Figure 1 contains an excerpt of the

data entity relationship model with the modifications. Specifically, the modifications consisted

of:

● The name of the Classification and Cluster classes have been updated into

Classification Model and Cluster Model, respectively, to represent more accurately

their meaning.

● Due to an error detected in the original model, now Classification Model and Cluster

Model inherit from Machine Learning Model.

● The cardinality of the associations between Machine Learning Model and

Classification Model, and between Machine Learning Model and Cluster Model has

been changed to 0..1 in both extremes of the associations.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 6 of 35

● The Classification Model class has now two new attributes, company and files.

Company represents the organization to which the requirement used to create the

classification pertains (e.g., Qt), and files correspond to sequential files that actually

contain the classification model.

● In the Classification Model class, the value attribute has been deleted and moved to the

new association classified.

● A new association classified has been added between Classification Model and

Requirement, which represents the requirements that have been classified with this

classifier. An associative class Classification is derived from this association, which

contains the property value that has been assigned by the classifier to this requirement.

Figure 1. Data entity relationship model excerpt of the Data layer (only the part that contains

modifications with respect to the one presented in deliverable D3.1)

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 7 of 35

2.2 Design of current functionalities

2.2.1 similar-requirement-recommender

i. Description

The mission of this task consists in the detection and recommendation of similar requirements

by analysing requirements from other (past) RE projects. From an architectural point of view,

the whole recommendation process includes several steps.

Besides some meta-data of requirements (such as explicitly defined skills required to solve the

requirement), as main criteria to find relevant requirements, the title and description of

requirements are taken into account. Given a detailed description and a title of every

requirement, NLP techniques are applied to extract their relevant features. Thereby, the text is

split into tokens and noisy data is removed (i.e., data cleaning). Next, stop words such as

prepositions or articles, which do not represent valuable information of a requirement, are

removed as well. After that, lemmatization is applied to the remaining tokens to reduce the

number of tokens that share the same meaning. This way, undesired ambiguity-related issues

caused by the same word appearing as plural and singular words, as verbs in different tenses,

can be counteracted. Since each remaining token represents a feature, the number of features

is reduced as well. This results in a less complex and more flexible recommendation model.

Finally, the current NLP pipeline computes the TF-IDF (Term Frequency and Inverse

Document Frequency) values of all remaining tokens, and these values are then used as

features.

In the next phase, clustering is applied to group similar requirements based on the pre-

processed tokens. Moreover, to better tackle the ambiguity of words (i.e., polysemy)

appropriate (soft) clustering techniques such as Latent Semantic Analysis (LSA) are exploited.

The recommendation system is based on hard-clustering in terms of hierarchical clustering as

well as soft clustering in terms of LSA. Similar requirements that lie in the close proximity in

the vector/latent space are then considered as candidates to be recommended to the

requirements manager by the recommender system.

This microservice includes an internal offline training to fit the model (see next section for

more details).

ii. Sequence diagram

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 8 of 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 9 of 35

iii. Example usage

URL /tugraz/similar-requirement-recommender

Method POST

URL params None

Data params {

 "id": 1,

 "title": "Speed Measurement",

 "description" : "As evaluation after a workout, the average speed must be

shown. The following statistics should be displayed: average speed, maximum

speed. This requires a time measurement, distance measurement, and a storage unit

for storing the data."

}

Returns [{

 "id": "28",

 “title”: “Distance Measurement”

 "description" : "For statistical purposes, a distance measurement is necessary

which requires data from a GPS sensor. This data is needed for the evaluation

software and therefore stored in memory."

},

...]

Return

explanation

This service returns a list of similar requirements to the given requirement (input

requirement). The requirements in the list follow the same format as the input

requirement.

2.2.2 related-requirement-recommender

i. Description

The microservice for detecting related requirements follows more or less the same structure as

the microservice for detecting similar requirements (see Section 2.2.1). The underlying

clustering approach differs slightly from the microservice that is about detecting similar

requirements. In contrast to the microservice which detects similar requirements, where the

focus lies on detecting requirements which have a bigger overlap (duplicate), the related

requirements recommendation approach focuses on finding related requirements based on the

same context information.

ii. Sequence diagram

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 10 of 35

iii. Example usage

URL /tugraz/related-requirement-recommender

Method POST

URL params None

Data params {

 "id": 1,

 "title": "Speed Measurement",

 "description" : "As evaluation after a workout, the average speed must be

shown. The following statistics should be displayed: average speed, maximum

speed. This requires a time measurement, distance measurement, and a storage unit

for storing the data."

}

Returns [{

 "id": "13",

 “title”: “GPS”

 "description" : "To capture position data, a GPS sensor should be used.

Through the measured position and time information, the speed and the distance

can be measured."

},

...]

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 11 of 35

Return

explanation

This service returns a list of related requirements to the given requirement (input

requirement). The requirements in the list follow the same format as the input

requirement.

2.2.3 classifier-component/train

i. Description

The goal of the train microservice is to train a classifier to assign values to a property. In the

context of the requirements recommendation engine, the property is isReq, and it represents

whether a piece of text is an actual requirement or other information (not representative for

the requirements engineering stage of a software project) (similar to identifying whether a

piece of text is a bug or not in (Antoniol et al., 2008)).

The microservice creates, for the requirements contained in the array received as parameter,

the files that represent a classifier that uses these requirements for training and stores these

files inside a classification model for the company and property received as parameter.

Specifically, these files are: dictionary, frequency, label-index and model. The classifier

corresponds to a Naive Bayes classifier. The file creation is done using Mahout1.

Right now, the name of the company and the property are used as primary key on the database.

Therefore, it is not possible to have more than one classifier for the same company and

property.

ii. Sequence diagram

1
 https://mahout.apache.org/

https://mahout.apache.org/

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 12 of 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 13 of 35

iii. Example usage

URL /upc/classifier-component/train

Method POST

URL params None

Data params {

 "requirements" :[

 {

 "id": "4523",

 "property_value": "Prose"2,

 "text" : "Reports and correspondence"

 },

 {

 "id": "1039",

 "property_value": "DEF"3,

 "text" : "Sufficient number of parking spaces must be provided

close to the office."

 }],

 "company": "Siemens",

 "property": "isReq"

}

Returns None

2.2.4 classifier-component/classify

i. Description

The classify microservice assigns values to a requirement property given the case that a

classifier was already trained. The information about the classifier is stored in a database in a

Classification Model entity (using as primary keys the name of the company to which pertains

the requirement used to train the classifier and the property it tries to predict). In this case, the

property is isReq (see section 2.2.3 for its definition).

The microservice creates first an entity of type Classifier by recovering from the database

connected to the data layer the training files for the specific company and property (which are

received as parameter). Afterwards, it uses this classifier to classify (i.e., assign a property

value to) the requirements received as parameter.

ii. Sequence diagram

2
 Prose is the label that represents other information different from an actual requirement (i.e., information not

representative for the requirements engineering stage of a software project)
3
 DEF is the label that represents a piece of text is an actual requirement

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 14 of 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 15 of 35

iii. Example usage

URL /upc/classifier-component/classify

Method POST

URL params None

Data params {

"requirements" :[

 {

 "id": "5432",

 "text" : "Construction Site"

 },

 {

 "id": "10030",

 "text" : "Contractor must arrange the Construction Site in

accordance with Articles 133 and 134 of the Building Act and Commission

Regulation (EC)"

 }],

 "company": "Siemens",

 "property": "isReq"

}

Returns "recommendations": [

 {

 "requirement": “5432”,

 "property_value": "Prose",

 "confidence": 93.44250563767345

 },

 {

 "requirement": “10030”,

 "property_value": "DEF",

 "confidence": 93.79632918450244

 }

]

}

Return

explanation

The output of this microservice indicates for each requirement received in the input

and the indicated property and company, the value predicted for the property.

In the example above, two requirements with id’s 5432 and 10030 are received in

the input, the property to be predicted is isReq (i.e., the piece of text is an actual

requirement or not) and the name of the company is Siemens. The microservice

returns that the requirement with id 5432 is supposed to be prose (which makes sense

because its text seems to be kind of the head of a section), and that the requirement

10030 is supposed to be a requirement (i.e., DEF) (which makes sense because the

piece of text is establishing a constraint of the regulation to be used). In addition, the

confidence value of the prediction of each property is returned (i.e., the closer to 100

the confidence is, the more certain is the classifier on the prediction done).

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 16 of 35

2.2.5 classifier-component/update

i. Description

The update microservice updates an existing classifier, which is used to assign values to a

requirement property. The information about the classifier is stored in a Classification Model

entity in a database (using as primary keys the name of the company to which pertains the

requirement used to train the classifier and the property it tries to predict). In this case, the

property is isReq (see section 2.2.3 for its definition).

For doing so, the microservice creates, for the requirements contained in the array received as

parameter, the files that represent a classifier that uses these requirements for training.

Specifically, these files are: dictionary, frequency, label-index and model. Afterwards, it

replaces in the database connected to the data layer the training files for the specific company

and property (which are received as parameter). The files creation is done using Mahout1.

ii. Sequence diagram

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 17 of 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 18 of 35

iii. Example usage

URL /upc/classifier-component/update

Method POST

URL params None

Data params {

 "requirements" :[

 {

 "id": "4523",

 "property_value": "Prose",

 "text" : "Reports and correspondence"

 },

 {

 "id": "1039",

 "property_value": "DEF",

 "text" : "Sufficient number of parking spaces must be provided

close to the office."

 }],

 "company": "Siemens",

 "property”: “isReq”

}

Returns None

2.2.6 classifier-component/train&test

i. Description

The train&test microservice returns the result of the k-cross-validation4 (k received as

parameter) using as set of requirements the ones received as parameter.

The microservice splits the set of requirements received as parameter in k groups. Then, for

each group, trains a Naive Bayes classifier with all the requirements received as parameters

except the ones in the group, and next, it tests the classifier with the requirements that are in

the group. This test returns several statistical measures. After all the test for the k groups have

been executed, the microservice returns the average of all the statistical measures. Specifically,

these measures are:

● Accuracy. Statistic that measures the rate of correctly classified instances (i.e., true

positives and true negatives) with respect to the number of classified instances.

4
 Cross-validation is a technique to evaluate predictive models by partitioning the original sample into a training

set to train the model, and a test set to evaluate it. In k-cross-validation, the original sample is randomly

partitioned into k equal size subsamples.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 19 of 35

● Weighted precision. The precision of a label is the rate of true positives with respect to

the sum of true positives and false positives. The weighted precision measures the

precision of all the labels taking into account their appearance (e.g., if 60% of the

instances have label A and 40% have label B, the weighted precision is

0.4*precision_A + 0.6*precision_B).

● Weighted recall. The recall of a label is the rate of true positives with respect to the

sum of true positives and false negatives. The weighted recall is calculated following

the same principle explained in the weighted precision.

● Weighted f1 score. The f1 score of a label is the is the harmonic mean of precision and

recall. The weighted f1 score is calculated following the same principle explained in

the weighted precision.

● Kappa. Statistic that measures the relationship between “accuracy” v.s. “random

classification”.

● Reliability. Statistics that measures the overall consistency, i.e., having a high

reliability means that the produced results are similar under consistent conditions.

● Reliability (std deviation). Standard deviation of the reliability across the k tests.

The classifier corresponds to a Naive Bayes classifier. The classifier creation and test is done

using Mahout1.

ii. Sequence diagram

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 20 of 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 21 of 35

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 22 of 35

iii. Example usage

URL /upc/classifier-component/train&test

Method POST

URL params None

Data params {

 “requirements" :[

 {

 "id": "4523",

 "property_value": "Prose",

 "text" : "Reports and correspondence"

 },

 {

 "id": "100147",

 "property_value": "DEF",

 "text" : " Contractor shall submit Progress Reports"

 },

 {

 "id": "1004",

 "property_value": "Prose",

 "text" : "STATIC SWITCHING"

 },

 {

 "id": "1039",

 "property_value": "DEF",

 "text" : "Sufficient number of parking spaces must be provided

close to the office."

 }],

 "k": "2"

}

Returns {

 "kappa": "0,3238",

 "accuracy": "78,4608",

 "reliability": "52,8879",

 "reliability_std_deviation": "0,4581",

 "weighted_precision": "0,907",

 "weighted_recall": "0,7846",

 "weighted_f1_score": "0,8243"

}

Return

explanation

Returns the statistic measures of the k-cross-validation done with the information

received in the input (basically, the id of the text, the text, and the property value

(i.e., label) assigned to the text.

2.3 Future work

Future work regarding the requirements recommendation service (see Section 2.2.1 and 2.2.2)

will go beyond the limits of LSA and include the consideration of word2vec and doc2vec

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 23 of 35

representations of words. That way, a more descriptive characteristic representation of the

words can be used. This representation can be exploited in combination with clustering to

improve the prediction performance of the generated model (see Lau et al. 2016).

Furthermore, the existing content-based recommender can be extended such that the

aggregated/estimated utility of the requirements evaluated by different stakeholders is taken

into account.

Future extensions of the requirements recommendation services will also be able to identify

bug reports based on an entered comment of a user. This can be achieved by using name-entity

recognition to look for similar bugs. In addition, it will also be able to identify individual

requirements, i.e., it will be able to separate a text (e.g., a sentence containing more than one

requirement) into individual requirements. The classification service could also take into

account the context in which the requirement is (for instance, the placement of the requirement

in a specific document and section).

Other extensions of the microservices will also present a list of prioritized recommendations

to the users as well as allow the users (humans) to give feedback on the presented

recommendations (i.e., retrain the models based on the human feedback).

Finally, at the implementation level, the microservices need to be adapted to the new standard

input JSON defined inside OpenReq, which was delivered too close to M18 as to update the

microservices.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 24 of 35

3 RECOMMENDATION FOR IMPROVING REQUIREMENTS QUALITY

All of the “recommendation for improving requirements quality” APIs are designed to give

quick suggestions on how to improve the quality of natural language requirements using

different NLP techniques.

3.1 Architecture

The APIs for recommendation for improving requirements quality are nested under two

microservices, accessible at “/hitec/prs-improving-requirements-quality” and

“/upc/reqquality/check-conformance-to-templates”. Each API has its own endpoint, listed below

with the respective description. The APIs do not talk to each other, and they do not interact

with any other microservices (OpenReq or otherwise). When a call is made to one of the prs-

improving-requirements-quality endpoints, a Python script is run against the given

requirements passed in the JSON body to the API, and the Python script returns a simple JSON

object with the recommendations for improving requirements quality.

3.2 Design of current functionalities

3.2.1 prs-improving-requirements-quality/check-lexical

i. Description

The check-lexical microservice checks individual words and simple word combinations

against a lexicon built from previous research (Tjong and Berry 2013), to test for ambiguities.

These ambiguities include dangerous plurals, imprecise words, weak words, pronoun misuse,

and more.

ii. Sequence diagram

iii. Example usage

URL /hitec/prs-improving-requirements-quality/check-lexical

Method POST

URL params None

Data params {

 "requirements": [

 {

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 25 of 35

 "id": 1,

 "elements": [

 {

 "id": 1,

 "name": "description",

 "text": "This is actually a good requirement.",

 "created_at": 1526385600

 }

],

 "status": "new",

 "created_at": 1526385600

 }

]

}

Returns [

 {

 "1": {

 "1": [

 {

 "text": "good",

 "title": "Vague",

 "description": "These vague words and symbols are likely to introduce

ambiguity.",

 "index_start": 19,

 "index_end": 23

 }

]

 }

 }

]

Return

explanation

This endpoint returns a list of ambiguities for each element under each requirement.

Each ambiguity contains the text that was identified as ambiguous, the title of the

ambiguity, the description of the ambiguity, and the index_start and index_end that

can be used to programmatically identify where the ambiguity exists within the

original element (which is necessary since a single sentence may have multiple

duplicate words, and not all of them may be ambiguous).

3.2.2 prs-improving-requirements-quality/check-regexps

i. Description

The check-regexps API checks word combinations and phrases using a lexicon of regular

expressions built from previous research (Gleich et al. 2010), to test for ambiguities. These

ambiguities include unclear inclusion, ambiguous plurals, and unclear associativity, among

others.

ii. Sequence diagram

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 26 of 35

iii. Example usage

URL /hitec/prs-improving-requirements-quality/check-regexps

Method POST

URL params None

Data params {

 "requirements": [

 {

 "id": 1,

 "elements": [

 {

 "id": 1,

 "name": "description",

 "text": "The system shall read HTML and PDF or DOC files.",

 "created_at": 1526385600

 }

],

 "status": "new",

 "created_at": 1526385600

 }

]

}

Returns [

 {

 "1": {

 "1": [

 {

 "text": "and PDF or",

 "title": "Unclear Associativity",

 "description": "The combination of “and” and “or” leads to unclear

associativity.",

 "index_start": 27,

 "index_end": 37

 }

]

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 27 of 35

 }

 }

]

Return

explanation

This endpoint returns a list of ambiguities for each element under each requirement.

Each ambiguity contains the text that was identified as ambiguous, the title of the

ambiguity, the description of the ambiguity, and the index_start and index_end that

can be used to programmatically identify where the ambiguity exists within the

original element (which is necessary since a single sentence may have multiple

duplicate words, and not all of them may be ambiguous).

3.2.3 prs-improving-requirements-quality/check-pos-regexps

i. Description

The check-pos-regexps API checks word combinations and phrases using a lexicon of regular

expressions designed to be run against natural language texts that have been converted to

include their part-of-speech (POS) tags (Gleich et al. 2010). The combination of both POS

tagging and regular expressions allows much more complicated ambiguities to be identified

such as adjectives, adverbs, and passive ambiguity.

ii. Sequence diagram

iii. Example usage

URL /hitec/prs-improving-requirements-quality/check-pos-regexps

Method POST

URL params None

Data params {

 "requirements": [

 {

 "id": 1,

 "elements": [

 {

 "id": 1,

 "name": "description",

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 28 of 35

 "text": "The system will be tested.",

 "created_at": 1526385600

 }

],

 "status": "new",

 "created_at": 1526385600

 }

]

}

Returns [

 {

 "1": {

 "1": [

 {

 "text": "be tested",

 "title": "Passive Ambiguity",

 "description": "Authors should state requirements in active form, as passive

conceals who is responsible for the action.",

 "index_start": 25,

 "index_end": 16

 }

]

 }

 }

]

Return

explanation

This endpoint returns a list of ambiguities for each element under each requirement.

Each ambiguity contains the text that was identified as ambiguous, the title of the

ambiguity, the description of the ambiguity, and the index_start and index_end that

can be used to programmatically identify where the ambiguity exists within the

original element (which is necessary since a single sentence may have multiple

duplicate words, and not all of them may be ambiguous).

3.3 Future work

The microservice check-conformance-to-templates remains to be developed. It will check that

the text of a requirement follow one of the requirement templates defined inside the

microservice. For doing so, the requirements will be first converted to include their part-of-

speech (POS) tags (Gleich et al. 2010).

In addition, we will develop a microservice that will measure the quality of the requirements,

in the sense that the microservice will turn a quality score between 0 and 1 (being 1 the

representation of “perfect quality”). Implicit in what we have developed so far, quality can be

measured by the amount of suggestions returned by the current microservices (for instance, if

100 out of 400 words in a requirement document are ambiguous, the document would be

assigned a quality score of 0.75). In the future, we are looking to deliver a microservice that

does this assignment explicitly, with a complete picture of all the quality metrics.

We are also conducting a systematic mapping study of requirement improvement algorithms,

which will lead to additional algorithms that can be developed and integrated into this set of

APIs. Additionally, with a complete picture of the state-of-the-art in requirement improvement

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 29 of 35

algorithms, we are looking to make advances in this area to contribute to both OpenReq as an

implementation, and the research community as published research. Therefore, some services

might be enhanced afterwards. For instance, the check-conformance-to-templates service

could be enlarged with new identified templates.

Additionally, efforts towards improving requirements quality are being implemented in the

form of stakeholder engagement and topic extraction. These projects mark extensions to the

original, intended functionality offered for recommendations for improving requirements

quality, and will be implemented in the coming months.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 30 of 35

4 PREDICTING REQUIREMENT PROPERTIES

The goal of all the “predicting requirements properties” microservices is to give

recommendations on the possible value of different properties of requirements. For each one

of the properties, different techniques will be tested to see which one provides better results.

Some of the properties are well-known in the requirements literature (e.g., risk and priority),

while others are specific for the trials cases. Specifically, the properties that are particular for

the trials are:

● Component (for the Qt trial), which is a part of a software project. In the case of Qt,

there is only one software project, so it is the part of the software to which the

requirement is related (e.g., Bluetooth, Wifi, and NFC).

● Environment (for the Qt trial), which is the operating system in which the requirement

should work on (e.g., Windows, Linux or Symbian).

● Compliant (for the Siemens trial), which represents if the requirement can be fulfilled

with an existing solution, if an existing solution needs modifications/adaptations to

fulfil the requirement, or if a new technical solution is needed.

● Domain (for the Siemens trial), which represents the department that should evaluate5

the requirement (similar to the maintenance teams used in (Di Luca et al., 2002).

● Technical solution (for the Siemens trial), which represents the existing solution that

might fulfil the requirement.

4.1 Architecture

At the moment of handing out this deliverable, the architecture of this task only needs the

modifications presented in Section 2.1; no extra modifications are needed with respect to the

architecture presented in deliverable D3.1.

4.2 Design of current functionalities

The first approach we are using for the prediction of properties is based on a Naive-Bayes

multi-valued classifier (i.e., the groups of the classifier are more than two). Therefore, we are

using the same microservices of the Classifier component defined in subsections 2.2.3 to 2.2.6

to train, classify, update and train&test the classifier, respectively. The only difference is that

for each property, the name of the property is passed to the train, classify and update services

in the parameter property. For instance, in the case of the Priority property, the parameter

property would receive the string priority.

4.3 Future work

This task finishes in M24, so this is just a first version of the functionalities. Up to now, the

recommendation of each requirement property has been approached as a classification task

with n classes. This task can also be seen as a similarity and relatedness problem, where the

5
 In the case of the Siemens trial, they work with bid projects. For the requirements engineering stage, these

means that the requirements are already stated, and they have to evaluate if the requirements (already stated in

the bid project) can be fulfilled by the company, how much effort would it take, and so on.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 31 of 35

requirement at hand (i.e., the requirement for which we want to predict the property) is

matched with similar or related requirements that have already been defined in past or on-

going projects. Therefore, we aim to test other approaches that reduce this task to a similarity

and relatedness detection case:

● one based on a hybrid recommender combining collaborative and content-based

techniques as well as clustering learning techniques (possibly improved with similarity

NLP techniques) (similar to the one used to identify similar and related requirements

in Section 2.2.1 and 2.2.2), and

● one based on topic modelling (Chien 2016), which can be used to associate a label /

tag (i.e., a topic) to a requirement or a subset of them, and then cluster the requirements

in groups of related ones. The clustering can be done at different level of granularities

(e.g., a hierarchy of topics), achieving different levels of relatedness.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 32 of 35

5 DEPLOYMENT AND INTEGRATION

The requirements recommendation microservices (see Section 2) are currently in the final

testing phase and will thereafter be deployed on the ENG infrastructure. Some of the

microservices of the requirements recommender (the ones in Section 2.2.1 and 2.2.2) are

already called by the official OpenReq prototype as well as the outcomes presented in the user-

interface.

The prs-improving-requirements-quality microservices (see Sections 3.2.1, 3.2.2, and 3.2.3)

are all deployed on the ENG infrastructure. They can be accessed adding

http://openreq.esl.eng.it/ to the URL shown in the explanation of the microservices. The

integration of the functionality offered by this microservice is in progress, currently on hold

due to delays in the final stage of deployment. We expect the functionalities will be integrated

soon into the OpenReq UI.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 33 of 35

6 CHALLENGES AND SOLUTIONS

In this section we describe the challenges we encountered and the solutions selected during

the development and testing phase.

6.1 Deployment difficulties

Challenge: Deployment on the ENG infrastructure was slower than expected.

Solution: Constant contact with ENG personnel to address the issues.

6.2 Lack of experience with Mahout

Challenge: During the development of the classifier component (Sections 2.2.3 to 2.2.6),

several problems related to its implementation with Mahout appeared (some of them due to

the lack of experience of the development team with Mahout). For instance, the train&test

microservice was giving pretty bad results, due to the fact that the classifier was not using the

proper files for dictionary and frequency. In addition, there was a bug caused by using the

categories (i.e., property_values) randomly.

Solution: A lot of time spent looking at documentation; similar problems and solutions

investigated in public forums.

6.3 Mahout integration

Challenge: Mahout usually is installed in a server. However, we wanted to integrate the

Mahout component inside the classifier component. That way, no external installation of

Mahout was needed in the deployment server (easing the deployment stage).

Solution: Similar problems and solutions investigated in public forums; integration of Mahout

as much as possible inside the classifier component, creating a small installation guide for the

remaining steps that could not be automatized.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 34 of 35

7 SUMMARY

In this deliverable we have presented the architecture, design and future work of the current

functionalities of the version 1 of the stakeholders’ recommender engine. Such version covers

a part of Task 3.2 (Screening and recommendation of relevant requirements), T3.3

(Recommendation for improving requirements quality) and T3.4 (Predicting requirements

properties).

For each one of the tasks covered for the version 1 of the stakeholders’ recommender engine,

we have described: 1) its architecture (i.e., whether modifications have been needed with

respect to the architecture presented in deliverable D3.1); 2) its design (i.e., for each one of the

microservices, we presented a description its sequence diagram(s), and an example of usage);

and, 3) the future work. The only task that has needed changes in the architecture is T3.2,

where small changes have been necessary in the data entity model to cover unforeseen needs

of the task. The future work of these tasks mainly encompasses the implementation of some

nice-to-have functionalities and also improvements on the already developed functionalities.

Afterwards, we summarized the current state of deployment and integration of the current

functionalities. In a nutshell, three of the microservices have been deployed (those ones

presented in Sections 3.2.1, 3.2.2, and 3.2.3), and two microservices have been integrated in

the OpenReq UI (the ones presented in Section 2.2.1 and 2.2.2). Problems arose in the ENG

deployment infrastructure that have slowed the deployment and integration of the services, but

mitigation actions have been taken place which will speed up the deployment process.

Finally, we also briefly described the challenges faced, and the solutions applied to solve them.

They are mainly related to deployment issues, to the use of Mahout in the classifier component

(the one presented from Section 2.2.3 to 2.2.6), and to the difficulty to achieve further

extensions of the current functionalities.

D3.2 Recommender Engine - Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 35 of 35

8 REFERENCES

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y. G. Guéhéneuc, Is it a bug or an

enhancement?: a text-based approach to classify change requests, Proceedings of the IBM

Centre for Advanced Studies Conference on Collaborative Research, 2008.

J. T. Chien, Hierarchical Theme and Topic Modeling, IEEE Transactions on Neural Networks

and Learning Systems, 27, pp. 565–578, 2016.

G. A. Di Lucca, M. Di Penta, S. Gradara, An Approach to Classify Software Maintenance

Requests, IEEE International Conference on Software Maintenance, pp. 93-102, 2002.

B. Gleich, O. Creighton, L. Kof, Ambiguity detection: Towards a tool explaining ambiguity

sources, in International Working Conference on Requirements Engineering: Foundation for

Software Quality, 2010.

J. H. Lau, T. Baldwin, An Empirical Evaluation of doc2vec with Practical Insights into

Document Embedding Generation, CoRR, http://arxiv.org/abs/1607.05368, 2016.

A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, Easy approach to requirements syntax

(EARS), in Proc. 17th IEEE Int. Requirements Eng. Conf., 2009.

C. Palomares, X. Franch, D. Fucci, Personal Recommendations in Requirements Engineering:

The OpenReq Approach, in 24th Int. Working Conference on Requirements Engineering:

Foundation for Software Quality (REFSQ’18), 2018

K. Pohl and C. Rupp, Requirements Engineering Fundamentals, 1st ed, Rocky Nook, Santa

Barbara, CA 93103, 2011.

S.F. Tjong, D.M. Berry, The design of SREE—a prototype potential ambiguity finder for

requirements specifications and lessons learned, in International Working Conference on

Requirements Engineering: Foundation for Software Quality, 2013.

http://arxiv.org/abs/1607.05368

