

Project co-funded by the European Commission under the
H2020 Programme.

Grant Agreement nº 732463

Project Acronym: OpenReq

Project Title:
Intelligent Recommendation Decision Technologies for

Community-Driven Requirements Engineering

Call identifier: H2020-ICT-2016-1

Instrument: RIA (Research and Innovation Action)

Topic ICT-10-16 Software Technologies

Start date of project January 1st, 2017

Duration 36 months

D5.1 OpenReq Approach for Requirements Knowledge and

Dependency Management

Lead contractor: UH

Author(s): UH, UPC

Submission date: December 2017

Dissemination level: PU

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 2 of 76

Abstract: A brief summary of the purpose and content of the deliverable.

OpenReq is a project that aims to enhance requirements engineering activities. This document

describes the state of the art and practice about, and the technical approach for the knowledge

representation and dependency management work package. We also outline the envisioned

software architecture for the software services realizing the requirements knowledge and

dependency management. Some of the initial results are summarized that will be refined later

over the course of the project. The results include the surveys of requirements reuse,

requirements management systems, and software product lines and variability as well as the initial

ontology focusing on requirements as artifacts.

This document by the OpenReq project is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Unported License.

This document has been produced in the context of the OpenReq Project. The OpenReq project is

part of the European Community's H2020 Programme and is as such funded by the European

Commission. All information in this document is provided "as is" and no guarantee or warranty

is given that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability. For the avoidance of all doubts, the European Commission has no

liability is respect of this document, which is merely representing the authors view.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 3 of 76

TABLE OF CONTENTS

1 Introduction 6

2 State of the art and practice 7

2.1 Impacted requirements engineering activities 7

2.2 Requirements modeling and representation 8

2.2.1 Requirements modeling and representation approaches 8

2.2.2 Empirical studies on requirements modeling and representation 9

2.3 Requirements interdependencies 11

2.3.1 The concept of interdependency as traceability 11

2.3.2 Interdependency types 12

2.3.3 Empirical experiences of interdependencies 14

2.4 Interdependency detection in natural language requirements 15

2.4.1 Cross-reference detection 15

2.4.2 Similarity detection 16

2.4.3 Inconsistency detection 19

2.5 Requirements reuse and patterns 20

2.5.1 Background on requirements reuse and requirements patterns 20

2.5.2 Practice of requirements reuse and requirements patterns 23

2.6 Requirement management systems 23

2.6.1 Overview of RMSs study 23

2.6.2 Requirements Reuse in RMS 24

2.6.3 Interdependencies Extraction and Management 26

2.6.4 Support Techniques - Additional functionalities 28

2.7 Software product lines, variability and knowledge-based configuration 29

2.7.1 Software product line, reuse, and variability 30

2.7.2 Knowledge-based configuration (KBC) 31

3 Concepts and technologies 34

3.1 The concept of a requirement 34

3.2 Representing requirements by a feature model 35

3.3 Formalization of requirements by an ontology 37

3.4 Interdependency detection 38

3.5 Requirements reuse via requirement patterns 40

3.6 Algorithms and technologies 42

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 4 of 76

4 Dependency engine architecture 44

4.1 Dependency engine context 44

4.2 Logical view of services in Dependency engine 45

4.2.1 Services 45

4.2.2 Dependency engine external interfaces (APIs) 46

4.3 Behavior of Dependency engine 47

References 50

Appendix 1: Full details of interdependency taxonomies 62

Pohl taxonomy 62

Carlshamre taxonomy 63

Dahlstedt taxonomy 63

Zhang taxonomy 65

Appendix 2: Full details of RMS comparison 66

Appendix 3: SRP Metamodel 75

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 5 of 76

LIST OF TABLES

Table 1. Empirical studies on specification and modelling ...11

Table 2. Similarity works based on NLP techniques and subsequent similarity calculation17

Table 3. Examples of requirements reuse and patterns ..20

LIST OF FIGURES

Figure 1. An example of a feature model based on the extensions of a feature model31

Figure 2. A preliminary ontology to represent requirements ..38

Figure 3. Software requirement pattern example ...41

Figure 4. The context of Dependency engine ..45

Figure 5. A logical view of services in Dependency engine and interfaces beyond system

boundary ...46

Figure 6. Example behavior of Dependency engine in the context of integration with a Jira plugin

 ...49

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 6 of 76

1 Introduction

OpenReq is a project that aims to enhance requirements engineering activities. The focus areas

cover activities in the entire requirements engineering life-cycle, starting from requirements

elicitation and analysis to supporting strategic decision making in requirements prioritization,

release planning and requirements reuse. The improvements for requirements engineering we

are looking for can be achieved through improved requirements management processes,

engineering methods and assisting tools.

The “Requirements knowledge and dependency management” work package of OpenReq

focuses on the phases after the requirements have been elicited and, in some cases, preliminarily

analyzed in terms of validity and quality. The requirements are treated holistically which mean

that the different kinds of relationships between requirements are covered rather than treating

requirements as detached entities. We collectively refer to any kinds of such relationship between

requirements as an interdependency. We use the term interdependency to emphasize that we

focus on requirement-level artifacts, rather than on general dependencies or traceability between

requirements and other artifacts, general plans and specific implementations.

In the core, there are two concerns. First, interdependencies that have not been specified need

to be detected. The knowledge about interdependencies need to be then represented holistically

in a model. Second, interdependencies need to be taken into account in requirements and product

management so that requirements are not considered only as singular entities but also as an

interdependent whole.

The requirements knowledge management aims at representing the requirements rigorously. We

introduce the approach that will be taken for representing requirements rigorously by an ontology

and describe the preliminary ontology proposal. The actual objective of OpenReq ontology for

requirements engineering is defined later over the course of the OpenReq project.

The interdependency management of OpenReq takes advantages of technologies and concepts

in model-based analyses and diagnosis. We bring in results from software variability and software

product lines as well as knowledge-based product configuration. Additional related topics covered

in requirements knowledge and dependency management are requirements reuse and

requirements patterns use in system’s requirements.

In this document, we first provide an overview of the state of the art and practice for the fields of

research that are relevant and related to the work package five. Second, we describe the

approach that covers the concepts and technologies that we plan to apply during the project to

address the research challenges. Third, we describe the software architecture of the part of the

OpenReq infrastructure that will demonstrate, validate and facilitate the practical application of

our results.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 7 of 76

2 State of the art and practice

This section summarizes the state of the art and practice related to OpenReq knowledge and

dependency management. The research methods applied in this section are as follows. We

updated the existing tertiary study (Bano2014) on requirements engineering with more recent

results following a simplified systematic review protocol adopted from our tertiary study

(Raatikainen2017). This resulted in 108 potential additional systematic reviews on requirements

engineering that were taken into account for the topics covered in this section. For the specific

topics, we have carried out a systematic mapping study for requirements reuse and a survey of

tools as described in more detail below in respective subsections. We have also carried out a

tertiary study about software product lines and variability (Raatikainen2017) as well rely on our

earlier review of knowledge based configuration and variability (Tiihonen2016) to complement our

existing knowledge (Tiihonen2014).

2.1 Impacted requirements engineering activities

On the basis of our literature study, the activities in requirements and product management that

are primarily involved in, or depended on, requirements knowledge and dependency management

are requirements prioritization and release management. The objective of this OpenReq work

package is not to develop methods for these activities but, rather, managing requirements

knowledge and especially interdependencies for them. Therefore, we only briefly summarize the

state of the art in the requirements prioritization and release management below. Requirement

specification, documentation and analysis are also concerned activities but artifacts involved in

these activities are described more detail later in this document.

Requirements prioritization is an activity during which the most important requirements for the

system are discovered (Sommerville2010). Requirements prioritization has been a topic of

extensive research, which is evidenced by the several systematic reviews that we summarize as

follows. Requirement prioritization is typically concerned about requirement priority

demonstration, requirement selection, requirement categorization and requirement value

assessment (Thakurta2016). There exist numerous different prioritization technique proposals,

e.g., as summarized in the recent systematic reviews covering the prioritization techniques

(Sher2014, Pitangueira2015, Thakurta2016). Prioritization is affected by structural complexity,

including interdependencies of the system under development (Thakurta2016).

Interdependencies, although considered important, are largely neglected or simplified and, e.g.,

direct simple additivity of property values is presumed (Daneva2008, Herrmann2008,

Achimugu2014).

Specifically, in agile development, requirements are managed in a backlog in which

interdependencies are one of the most common factor to be taken into account in ordering, i.e.

prioritizing, the backlog (Silva2017). Prioritization is often seen an optimization problem for which

solutions, such as algorithms, are proposed but the focus of such prioritization methods is, e.g.,

on novelty, expressiveness or accuracy of the solution rather than use or practical utility

(Pergher2013). In fact, little empirical context details are provided and there are few supporting

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 8 of 76

tools for prioritization (Pergher2013). Scalability of prioritization methods is another identified

challenge (Babar2011, Achimugu2014).

Release planning is “concerned with selection and assignment of requirements in sequences of

releases such that important technical and resource constraints are fulfilled” (Svahnberg2010).

This is typically done by a person or team that negotiates priorities of requirements and decides

what each release should comprise. In a systematic review of strategic release planning models

(Svahnberg2010), 24 different models are distinguished. Requirements interdependencies in

general are clearly the most common requirement selection constraint that is taken into account

in release planning, yet further details about nature of about interdependencies or

interdependencies management are not given.

A more recent survey indicates similar results (Ameller2016). The empirical validation for the

majority of models is also noted to be immature. In Open Source development communities,

setting development priorities and defining releases can be a collaborative, communicative and

consensus-based process (e.g. Raymod1999 and VonHippel2003) for which the RMS needs to

provide functionalities, such as commenting and voting for the requirements’ priorities. There are

several strategies for defining releases, which can vary from feature-driven, time-based, frequent

and further (GomesdaSilva2017).

2.2 Requirements modeling and representation

We summarize some proposed methods for requirements modeling and representation that we

have collected from current research literature. Then, we summarize the known reported empirical

evidence to outline what is being applied in practice. However, we are not aware of any systematic

studies that provide a survey or meta-analysis of requirements modeling and representation

approaches.

2.2.1 Requirements modeling and representation approaches

Natural language (NL) is a common means for representing requirements knowledge. Typically,

a requirement is expressed by free form sentences. An archetypal form is a “shall”-sentence. An

example of a more specific form are structured NL — for example EARS (Mavin2016) proposes

five structured NL requirements templates. Another example of structured NL are contextual

templates, such as “use cases”, which prescribe pre- and post-conditions for requirements and

steps that are carried out to fulfill the requirement.

A development project can start with only a high-level vision of the software’s purpose, which is

then used to build a minimally viable prototype for gathering customer feedback. Here,

requirements can be expressed as improvement ideas, bug reports or “user stories”, which can

later be bundled together as “epic requirements”, giving the requirements body additional

structure. In the agile software development environment, requirements can be stored and then

organized in spreadsheet-like backlogs in which prioritized requirements can be contained in a

hierarchical structure.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 9 of 76

In more established environments, textual requirements can be stored in a dedicated

requirements management system (RMS), examples which we cover in detail later in this section.

In a RMS, the high-level requirements may or may not be refined into work tasks, depending on

which style is in use in the software development project. Workflow management tools such as

task- or issue trackers can then be used for managing details of what needs to be done for

achieving the goals of each requirement. These systems also provide functionalities that help

discussing, prioritizing and refining the requirements, which is essential for enabling distributed

collaboration.

Beyond NL, different types of requirements modeling notations have been proposed. These often

include a graphical notation. Goal modeling (Mavin2017) as exemplified by i* (Dalpiaz2016), is

one group of modeling methods that have been proposed for requirements modeling. Feature

modeling (Kang1990) is another family of methods that can be used for representing

requirements. Finally, we mention UML and SysML as examples of more general modeling

languages that are capable of expressing requirements.

Requirements can typically contain a set of properties such as priority and effort. Properties can

also be called attributes. We use the term meta-data for covering additional characteristics, such

as change history. Each property, or more precisely a property type, has a value in a requirement.

Requirements in different projects generally have different sets of property types. For instance,

an analysis found about 280 different property types, concluding that there is no single property

type that can be generally relied on to be applicable to any situation (Riegel2015).

One specific means to represent requirements is the Requirements Interchange Format (ReqIf),

which is a standard of the Object Management Group (OMG) (OMG2016). ReqIf can be used for

exchanging requirements between different requirement management systems. ReqIF provides

concepts for representing requirement documents that consist of individual requirements

organized in a compositional (part-of) hierarchy. Different requirement types can be defined, each

with many type-specific properties. These are instantiated to requirement document(s). Binary

relationship types with optional properties can be defined and instantiated between individual

requirements. Actual content of a requirement is expressed as text or rich text (XHTML) attribute

value, complemented with additional attributes. In other words, no built-in semantics exists in

ReqIf.

2.2.2 Empirical studies on requirements modeling and representation

In order to find out what kinds of requirements models and representation are being used, we

summarize in the following the results of our review. Since 2010, several empirical studies have

been conducted to explore aspects related to specification and modelling of requirements. These

are summarized in Table 1. We manually review requirements engineering related conferences

RE, REFSQ, ESEM, FSE/ESEC and ICSE, and journals REJ, IST and EMSE from 2010 onwards.

We classify them into two major groups, taking into account the scope of each study. The first

group contains empirical studies that investigate general practices on RE and include some

results related to the specification and modelling of requirements. In this group, two studies are

focused on investigating the challenges and needs of RE, either in general or for a specific type

of requirements or software project (Hiisilä2015, Sikora2011), and three studies exemplify state-

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 10 of 76

of-the-practices in requirements engineering (Méndez2015, Palomares2017, Raatikainen2011).

In the second group, we find empirical studies that are specifically focused on the specification

and modelling of requirements (Hotomski2016). We summarize below some highlights of these

studies and results that are related to the scope of this report.

In (Hiisilä2015), one of the goals is to investigate what the challenges of a customer organization

RE process are in an outsourced development environment. With that purpose, they conduct a

case study in a Finnish insurance company, performing 17 interviews and analyzing 15 large

software development projects. In addition, the authors conducted five workshops in a company

to validate their results. This extensive case study highlights one challenge in particular: how to

model requirements that cover comprehensively different aspects from the enterprise context?

A qualitative study (Hotomski2016) explores the current practices for managing two related types

of software documentation: requirements and acceptance tests. They interviewed 20 practitioners

from 17 business units in 15 companies to investigate the company practices for writing,

maintaining and linking requirements and acceptance test documents. The results are related to

how requirements and text documents are modelled in practice, how requirements and

acceptances tests are updated, and what difficulties are faced in the project. The results show

that NL is widely used by most of the participants — in the case of waterfall companies, they use

mostly plain requirements (i.e., free-format requirements), while in the case of agile companies,

they use mostly user stories.

The design of a globally distributed family of surveys to study the state-of-the-practice in RE as

well as the results of the first run of the survey in Germany with 58 participants are presented in

(Méndez2015), which was later extended to ten countries and 228 companies (Mendez2017). In

the results, participants agree on the fact that the definition of standardized RE artefacts with

document templates across different projects environments or tool support is important.

The goal in (Palomares2017) is to investigate the state of the practice in the reuse of

requirements. The authors conducted an exploratory survey based on an online questionnaire. In

addition to questions related to requirements reuse, they also include questions related to the

participants’ background or to general RE practices used in the participant's daily work, such as

specification languages. They received 71 responses from requirements engineers with industrial

experience in the field. In the results, the largest share of responses (57 participants) uses

requirements in NL (being just plain requirements, use cases or other scenario-based

approaches), followed by UML (38 participants) and goal-oriented languages (5 participants). 12

participants state to use other languages, from which four used BPMN to write requirements.

The state-of-the-practice of RE in the nuclear energy domain in Finland is presented based on a

descriptive case study that focuses on the safety-related automation systems of the nuclear power

plants (Raatikainen2011). Data was collected by interviewing two nuclear energy domain experts

representing public authority and five experts working at the three power companies (utilities).

Here, practically all requirements specifications were written using NL, causing the challenge of

how representing interdependencies among requirements and beyond requirements.

To identify the key industry needs, (Sikora2011) conducted an in-depth study with representatives

from large, internationally operating companies in the domain of embedded systems in Germany.

The authors interviewed ten practitioners with a clear view of the RE needs on their companies,

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 11 of 76

and they collected extra data by means of pre- and post-interview questionnaires sent to the same

participants. Their results are related to the use of NL and requirements models, the support

during RE for high system complexity, the quality assurance for requirements and the

interrelation of RE and the architectural design of embedded systems software. In detail, their

results show that most of the participants use NL to specify requirements, and that requirements

models do not have a widespread use. Additionally, a challenge related to the specification and

modelling of requirements is identified: the use of NL to specify requirements is not satisfactory.

Table 1. Empirical studies on specification and modelling

Source Relevant Results on Specification and Modelling

(Hiisilä2015) ● Challenges: Modelling comprehensive requirements from the enterprise context.

(Hotomski2016) ● Languages: NL (waterfall companies use mostly plain requirements, agile companies use mostly user
stories).

(Méndez2015) ● Templates & Tools: The definition of standardized RE artefacts with document templates across
different projects environments and/or tool support is important.

(Palomares2017) ● Languages: NL (plain requirements, use cases or other scenario-based approaches) (57
participants); UML (38 participants); Goal-oriented languages (5 participants); other (12
participants).

(Raatikainen2011) ● Languages: NL.
● Challenges: Modelling interdependencies among requirements.

(Sikora2011) ● Languages: NL rated as often or always (9 participants); Models are not common (8 participants
sometimes or rarely use them). It is much easier to understand complex requirements if they are
specified by means of models.

● Challenges: Use of NL to specify requirements is not satisfactory (5 participants).

As a summary, natural language in its various forms seems to be the most commonly used

method for representing requirements. Different kinds of diagrams are rarely applied or are

applied only to a part of the requirements that are used to specify software systems. Therefore,

we will focus on natural language requirements in OpenReq.

2.3 Requirements interdependencies

Next, we first elaborate the concept of interdependency in general and introduce taxonomies that

have been proposed for defining requirements interdependencies. We also summarize results

from empirical studies on experience of interdependencies in their realistic context in

requirements management.

2.3.1 The concept of interdependency as traceability

Interdependencies of requirements are considered a special class of requirements traceability

focusing only on information about requirements (Dahlstedt2005, Zhang2014). In general,

requirements traceability is defined as: “ability to describe and follow the life of a requirement, in

both forward and backward direction, ideally through the whole system life cycle” (Gotel1994).

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 12 of 76

Two different requirements traceability relations can be differentiated from which direction (from-

to) they take can also be separated (Dahlstedt2005):

● Pre-traceability refers roughly to the domain that requirements concern.

● Post-traceability refers to the realization of requirements, e.g. by completed work tasks or

developed software artifacts.

Traceability can also differentiate between (Dahlstedt2005):

● Horizontal traceability between the information of same type

● Vertical traceability between previous and subsequent phases in the development process

i.e. between information objects of different types

Alternatively, the scope of interdependencies can be divided and simplified as (Carlshamre2000):

● Internal from a set of requirements to another set of requirements referring to

interdependencies.

● External from a set of requirement to other artifacts than requirements encompassing

different traceability.

Consequently, an interdependency is horizontal traceability or dependency within same types of

artefacts, such as requirements artefacts. There can be different types of requirements such as

epics and user stories. In addition, user and technical requirements can be involved in

interdependencies because the information is still the same type. Pre- and post-traceability are

more general and thus not within the scope of our definition of interdependencies.

The nature of interdependency can be (Carlshamre2000):

● Explicit i.e. presentation exist explicitly as the content or property of a requirement.

● Implicit so that interdependency appears dynamically. For example, a set of requirements

are not initially dependent but when they are selected to a release, they become

dependent.

Even in explicit interdependencies, it is possible that their presentation is not captured in any

model and that the interdependencies exist only logically.

In OpenReq, we focus primarily on interdependencies or horizontal traceability. Therefore, the

following discussion is carried out in the light of interdependencies, although we do not disregard

other traceability links. We treat requirement dependency roughly as a synonym for

interdependency, yet emphasize the intention by preferring the term interdependency.

2.3.2 Interdependency types

Although interdependencies have been identified and even emphasized in research literature,

there are only a few taxonomies (or classifications or typifications) that elaborate the nature of

interdependencies. Not all interdependency taxonomies focus solely on interdependencies, but

cover also traceability beyond interdependencies but we give a full account on each taxonomy.

Most of the introduced taxonomies provide a grouping of interdependency types. The full

taxonomies are tabulated in Appendix 1 including more detailed authors’ definitions and groupings

presented in italic font.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 13 of 76

First, Pohl taxonomy is, to the best of our knowledge, the earliest taxonomy of

interdependencies. It is based on a literature survey that covers roughly 30 research papers. This

taxonomy has the largest number of interdependency types. The meaning of each

interdependency type is sometimes described very shortly. The intention of Pohl taxonomy

appears to be general for requirements engineering.

Second, Carlshamre taxonomy (Carlshamre2001) emerged from the phases of requirements

prioritization and release management. As for the previous work used in Carlshamre taxonomy,

there is a taxonomy of the following interdependency types: 1) cannot exist, 2) must exist, 3)

positive cost, 4) negative cost, 5) positive value, and 6) negative value (Karlsson1997). These

types are further specified for the release and product management purposes resulting in the

taxonomy in question.

Third, Dahlstedt taxonomy (Dahlstedt2005) provides a more recent synthesis of

interdependencies in the literature of requirements engineering in general. The focus of this

taxonomy is on requirements interdependencies, which is explicitly differentiated from traceability.

Dahlstedt taxonomy takes into account the aforementioned two taxonomies. The objective of

Dahlstedt taxonomy is to synthesize and abstract interdependency types in order to result in a

simpler taxonomy of smaller number of interdependency types. However, exact definitions are

not provided for interdependency but the interdependency types are merely informally described.

The types are not provided with a description of empirical assessment, which is reported to be in

the author's agenda.

Fourth, Zhang taxonomy (Zhang2014) studied the abovementioned taxonomies. They took both

Pohl and Dahlstedt taxonomies as the basis for their study, tested them empirically and proposed

a Zhang taxonomy, which is provided in more formal definitions than its predecessors. The Zhang

taxonomy is based on removing interdependency types that are not common or seldom found in

practice (such as Test_case_for and Purpose). Authors also clarify confusing or ambiguous

interdependency type definitions (e.g., Conflicts and Conflicts_with), combining and refining some

overlapping and alternative interdependency types in the different models (e.g., Similar and

Similar_ to). They also introduce new interdependency types (e.g., Be_exception_of). The full

details is presented in the original study (Zhang2014).

In addition, a general model of grouping interdependency types was developed (Zhang2014). It

consists of two classes at the top level and at the lower level into six classes, which, however, are

not clearly described. The top-level class called ‘Intrinsic interdependencies’ consists of essential

interrelated states of requirements, reflecting semantic and structural information of requirements.

The ‘Additional interdependencies’ class covers e.g., release planning. Intrinsic

interdependencies are considered more important for software engineers in discovering

interdependencies because they may affect many software engineering activities, including

requirements change impact analysis and project planning. They are also generally helpful in

identifying additional interdependencies. Intrinsic interdependencies are divided into business,

implementation, structure, and evolution classes while additional interdependencies consist of

value and cost classes.

The existing studies on interdependencies in requirements engineering seem to utilize the above-

mentioned taxonomies or subsets of types defined in these taxonomies. However, it is common

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 14 of 76

that the exact types or semantics of the interdependency are not covered. That is,

interdependency is treated as an important concern, but covered in an abstract or general

manner. They are generally referred as “(inter)dependency” without any explicit semantics.

To summarize, there seem to be some taxonomies that share many similarities with each other,

but vary especially in terms of number of interdependency types they present. Two taxonomies

focus solely on binary relationships in interdependencies similarly as ReqIF while two taxonomies

seem to allow more complex many-to-many relationships. However, they do not explicitly state

this nor provide details or examples on any non-binary interdependency. In terms of using

dependencies, e.g. in prioritization or release management, little or no details of the

interdependency types or semantics are given although interdependencies are considered

important. Therefore, rather than analytically synthesizing the taxonomies, we elaborate below

the empirical experience of interdependencies.

2.3.3 Empirical experiences of interdependencies1

For the aforementioned Carlshamre taxonomy, studies have been conducted in empirical settings

with Swedish companies in which the interdependency types were applied to 20 requirements in

five realistic cases (Carlshamre2001). The researchers found that it is not easy to differentiate all

interdependency types: as an example, differentiating the AND/REQUIRES interdependency

from CVALUE is difficult in cases where two requirements are always linked, but not strictly

require each other. The study also revealed that CVALUE and ICOST are common

interdependencies in market-driven or evolutionary development when new features are added,

whereas AND and REQUIRES are common in bespoken or early phase of development. The

authors point out that CVALUE and ICOST are sometimes found in combination. However,

especially these value-based interdependencies are often subjective, especially in measures. In

general, the requirements managers who participated in the study were sure about correctness

of interdependencies and they identified that there is no need for a fuzziness or confidence factor.

Only a few requirements are singular i.e. have no interdependencies while a few requirements

cover most of the interdependencies. It was found that these highly interdependent requirements

can be easily identified. Conflicting requirements were not found, probably because requirements

could have been already negotiated. In further application of the taxonomy, it was found that the

type of an interdependency does not matter as significantly as the strength of the interdependency

(Carlshhamre2002). That is, there can be imperative (normative) value-related interdependencies

(CVALUE, ICOST) as well as negotiable functional (normative) interdependencies (AND,

REQUIRES).

Pohl and Dahlstedt taxonomies were evaluated by applying them to an existing system by three

engineers in a case study of change propagation while rewriting the system. The study resulted

in the following findings (Zhang2014). Precondition is identical with Requires and the most

common interdependency within individual modules and in between modules. Constraint can be

used to describe the relationships between non-functional and functional requirements, yet what

is meant by a ‘constraint’ is not clearly explained and commonly agreed. Similar ambiguity is in

1 For details of the interdependency types, see Appendix.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 15 of 76

that satisfies describes a specific kind of constraint relationship between requirements that seem

to be different than intended in the original taxonomies. The compares and conflicts

interdependency types are hard or ambiguous to understand and often misused, if at all. Some

interdependency types could not be found at all in the requirements, such as example_for,

test_case_for, background, and purpose. The value-based interdependency types

increase/decrease_value_of and increase/decrease_cost_of are hard to quantify. Finally, the use

of interdependencies is context-dependent, meaning that, e.g., the background, role in

organization, and existing knowledge affect largely.

In addition, few industrial studies emphasize that interdependencies are important in requirements

engineering (Lehtola2004, Vogelsang2010) in general. However, a more detailed typology of the

interdependencies is not provided in these studies.

As a summary, interdependencies are a key concept for requirements knowledge and

dependency management of OpenReq. However, few empirical studies assess the

interdependency taxonomies, or otherwise provide details or semantics for interdependencies.

These studies have also different focus and have been conducted only in relatively simple or

limited contexts. Therefore, the results are not very conclusive. The existing taxonomies seem to

be sufficient enough for the purposes of OpenReq and there even seems to be extraneous

interdependency types that have little practical value. The existing studies indicate that relevant

interdependency types are very context dependent, based on the nature of products such as

bespoken or market driven, and the task at hand such as release planning or refactoring.

2.4 Interdependency detection in natural language requirements

Several works deal with the detection of interdependencies when requirements are specified

using natural language. This body of research can be classified in different groups. Firstly, when

interdependencies are explicitly stated in natural language texts in the body of requirements

description, their identification is related to cross-references identification. Secondly,

interdependencies can be identified by detecting similar requirements. Thirdly, several works can

be found for identifying the specific type of interdependency namely inconsistency. Each one of

the previous groups is presented in the following subsections.

2.4.1 Cross-reference detection

Cross-reference detection aims to identify the natural language (NL) expressions that denote

cross references, i.e. a piece of text within a document which refers to related information

elsewhere, in the same or different document, such as “This decision [referring to the previous

requirement] has been taken due to the requirements stated in section 5.1”. The interpretation of

these expressions and linking them to the targets is a part of cross-reference resolution.

Identifying and resolving cross references in text is a part of the more general problem of

requirements traceability, and therefore of requirements interdependencies. Cross-reference

detection has been specially used in the field of legal requirements. Below, we describe research

approaches related to detecting cross-references in legal texts.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 16 of 76

Two studies (Breaux2008, Palmirani2003) identify natural language patterns for cross references.

The former is based on a study of different US regulations and the latter one is based on

guidelines for the Italian legal corpus. However, they tackle only cross-reference identification and

not resolution, and therefore the automation for text structure markup is not provided. Breaux

(Breaux2008) goes one step further and proposes the use of an explicit schema for modeling the

structure of legal texts.

An approach for resolving external cross references is proposed in (Hamdaqa2009), where

automated markup is generated using manually written regular expressions. These regular

expressions (i.e., patterns) are defined by means of finite state machines. The identified patterns

are limited, in the sense that they apply only to external cross references, and that they are

exclusively based on best practices and thus insufficient for the richer citation styles used in actual

texts.

Machine learning for cross reference identification and resolution in Japanese legislative texts is

applied in (Tran2014). The use of machine learning can be advantageous since it does not require

an a-priori specification of the patterns in cross references. However, it makes much more difficult

to detect patterns with recursive structures or multiple layers, and therefore this kind of patterns

are not handled in this work.

The approaches presented in (Sannier2017) and (deMaat2006) are similar, differences in

language aside, and the patterns observed in their cross-reference detection are closely aligned.

In (Sannier2017), it is proposed an approach for automated detection and resolution of cross-

references, which leverages the structure of legal texts, formalized into a schema, and a set of

NL patterns for legal cross-reference expressions. These patterns are based on an investigation

of Luxembourg’s legislation written in French.

The most important features of the approach are: 1) The use of a schema enables, using

techniques from NLP, to automatically derive the necessary regular expressions for text markup

generation; 2) It addresses, in an algorithmic way, subtleties that one needs to take into account

with regard to the interpretation of complex cross reference expressions; and 3) It devises a set

of cross-reference patterns in a very detailed and complete manner for cross-reference

identification.

In the other study (deMaat2006), the patterns used in the cross references appear in the Dutch

laws. This approach assumes that legal texts are already in a markup format with adequate

structure to be transformed into the markup format required by the approach (contrasted to

(Sannier2017), which did not require pre-existing markup. Another difference between the

approaches is that (deMaat2006) does not elaborate the resolution process, while (Sannier2017)

provides a detailed treatment of resolution.

2.4.2 Similarity detection

Similarity detection, also known as paraphrase detection, is an approach closely related to

detection of interdependencies in between requirements. This relationship is evident in the case

where two requirements have almost the exact same formulation, since in this case we would

have an OR interdependency between the requirements. Imagine the requirements The interface

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 17 of 76

should use the letter type Arial and The interface should use the letter type Calibri; it is clear that

these two requirements are similar (except for the words Arial and Calibri) and they cannot be

used in the same system (since it is not possible two use two letter types for the whole system

interface), so these requirements are related by an OR interdependency. However, even in other

cases there are commonalities. As an example, if requirement R1 states that “It shall be possible

to filter by name and address.” and requirements R2 states that “It shall be possible to filter by

age.” it would probably be wise to treat the two requirements at the same time to save

development resources. This example can be considered as an ICOST interdependency, by the

terminology described above (Carlshamre2001). Other examples of interdependencies that can

trigger a similarity analysis at a lexical level can be, e.g., the conflicting requirements “The button

shall be blue.” and “The button shall be red.” In the following, we present some approaches that

tackle the identification of this type of similarity in NL texts.

One approach to detect similar texts is to do a number of pre-processing steps based on NLP

(e.g. breaking into words, removing stop words, stemming words, etc.) and a subsequent

calculation of a similarity measure (e.g., Dice coefficient, Jaccard coefficient, Cosine coefficient,

etc.). Several existing works follow this approach (NattOchDag2002; Prifti2011; Runeson2007;

Sun2011; Wang2008), and most of them have been done in the field of textual documents or

reports similarity — only the work of (NattOchDag2002) is specifically about requirements

similarity. Table 2 presents a summary of these works in terms of what preprocessing steps are

used and the similarity measures used.

Table 2. Similarity works based on NLP techniques and subsequent similarity calculation

Source Similarity
Scope

NLP preprocessing Similarity
measures

(NattOchDag2002) Requirements 1) Lexical analysis, 2) Stop words removal, 3) Stemming Cosine, Dice, Jaccard

(Prifti2011) Reports 1) Tokenization, 2) Stemming, 3) Stop words removal Cosine

(Runeson2007) Reports 1) Tokenization, 2) Stemming, 3) Stop words removal,
4) Spellchecking, 5) Vector space model representation

Cosine

(Sun2011) Reports 1) Tokenization, 2) Stemming, 3) Stop words removal BM25F extension

(Wang2008) Reports 1) Stemming, 2) Stop words removal, 3) Vector space
model representation

Cosine

Well-known similarity techniques include latent semantic analysis (LSA), also known as Latent

Semantic Indexing (LSI), which is a fully automatic mathematical/statistical technique that

analyzes a large corpus of NL text and provides a similarity representation of words and text

passages (Foltz1998). In LSA, a group of terms representing an article is extracted by judging

from among many contexts, and a term-document matrix is built to describe the frequency of

occurrence of terms in documents. Then, the matrix representing the article is divided by Singular

Value Decomposition (SVD). When the LSA is applied to calculate the similarity between texts,

the vector of each text is transformed into a reduced dimensional space, while the similarity

between two texts is obtained from calculating the two vectors of the reduced dimension. One of

the standard probabilistic models of LSA is the Probabilistic Latent Semantic Analysis (PLSA),

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 18 of 76

which is also known as Probabilistic Latent Semantic Indexing (PLSI) (Hofmann1999). PLSA uses

mixture decomposition to model the co-occurrence words and documents, where the probabilities

are obtained by a convex combination of the aspects.

Random projection (RP) is another powerful technique for dimensionality reduction of the matrices

representing a text: given a matrix X, the dimensionality of the data can be reduced by projecting

it through the origin onto a lower- dimensional subspace, formed by a set of random vectors of

the desired, reduced dimensionality (Lin2003).

Another important study is the Hyperspace Analog to Language (HAL) (Burgess1998). HAL and

LSA share very similar attributes: they both use concurrent vocabularies to retrieve the meaning

of a term. In contrast to LSA, HAL uses a paragraph or document as a unit to establish the

information matrix of a term. HAL uses a window matrix scans through the entire corpus, using �

terms as the width of the term window (normally with � = 10 terms) to record in a � x � matrix

the weight of each shared term (number of occurrence/frequency). A 2� dimensional vector of a

term can be acquired by combining the lines and rows of the matrix corresponding to the term,

and the similarity between two texts can be calculated by the approximate Euclidean distance.

However, HAL has less satisfactory results than LSA when calculating short texts.

Other approaches are found in literature to deal with similarity detection. A study (Lee2014)

obtains similarity from semantic and syntactic information contained in the compared NL

sentences by using grammatical rules and the WordNet ontology. A set of grammar matrices is

built for representing the relationships between pairs of sentences. Here, a NL sentence is

considered as a sequence of links instead of separated words, each of which contains a specific

meaning. The latent semantic of words is calculated via a WordNet similarity measure.

(Pedersen2005) presents SenseClusters, an unsupervised approach that is language

independent, and uses no knowledge other than what is available in raw unannotated corpora to

cluster together similar contexts. SenseClusters represents the contexts to be clustered using

either a first order or second order representation. For the first order representation, a matrix

where each row represents a context and the columns represent the identified lexical features is

created, following a word sense discrimination approach that uses first order vectors based on

local syntactic features to represent contexts. For the second order contexts, a co-occurrence

matrix is constructed using a word sense discrimination method based on bigrams, co-

occurrences, or target co–occurrence features identified The resulting context vectors

represented using either first order representation or second order representation are clustered

as the next step, using either vector spaces or different similarity measures (e.g. Cosine, Jaccard,

Dice, etc.).

A similarity metric proposed in (Wang2012) computes the probabilistic edit distance of two NL

sentences as predictions of semantic similarity. It learns weighted edit distance in a probabilistic

Finite State Machine (pFSM) model, where state transitions correspond to edit operations that

are even able capture long-distance word swapping or cross alignments. A FSM defines a

language by accepting a string of input tokens in the language, and rejecting those that are not.

A probabilistic FSM defines the probability that a string is in a language, extending on the concept

of a FSM. Unlike other applications of FSMs where tokens in the language are words (e.g.

Vidal2005), in the FSM language of (Wang2012) tokens are edit operations. A string of tokens

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 19 of 76

that the FSM accepts is an edit sequence that transforms one side of the sentence pair into the

other side.

Finally, in (Grabilovich2007) and (Chen2016) similarity is tackled from the machine learning

perspective. The first one (Grabilovich2007) proposes a method that uses machine learning-

based text classification techniques to build a semantic interpreter that maps fragments of natural

language text into a weighted sequence of Wikipedia concepts ordered by their relevance to the

input. This way, input texts are represented as weighted vectors of concepts, called interpretation

vectors. The meaning of a text fragment is thus interpreted in terms of its affinity with a host of

Wikipedia concepts. Then, the relatedness of texts in this space is assessed by comparing the

corresponding vectors using conventional similarity metrics (e.g., Cosine). In (Chen2016), Latent

Dirichlet Allocation (LDA) topic model and K-Nearest Neighbor algorithms are used in a short text

classification approach that could be extrapolated to classify similar requirements together. LDA

is a probabilistic, generative model, which in this case is used to generate the probabilistic topic

of a text, since each topic is characterized by a probabilistic distribution over words.

To measure similarity, the model assumes that the discriminative words between two short texts

usually have important information, which can reveal their implicit relationships. If there are

several common latent topics related to the discriminative words in the two short texts, these

latent topics can be used to compare each short text mutually. Therefore, two short texts can be

assigned to the same class where their latent topics are similar. Then, KNN is used with a

Euclidean distance to measure the similarity of the topics represented in a text and assigns the

text to the most similar topic.

2.4.3 Inconsistency detection

The issues of detecting inconsistencies in requirements have received less attention when

compared to detecting inconsistencies in requirements models (e.g., Escalona2013,

Perrouin2009, Ali2013).

Inconsistency detection has been discussed implicitly in (Jain2009) and (Verma2008), whereas

in (Zhu2005), a domain ontology is used as the basis for identifying inconsistencies. The domain

ontology, which is based on an abstract requirements refinement process model, serves as an

infrastructure for the refinement of software requirements, with the aim of acquiring comparable

requirements descriptions. Thus, requirements inconsistency can be measured based on tangent

plane of requirements refinement tree, after inconsistent relations of leaf nodes at semantic level

have been detected.

Inconsistency detection in (Misra2016) is based on a content analysis technique that exploits the

extraction, from requirement documents, of the interactions between the entities described in the

document as Subject-Action-Object (SAO) triples, which are obtained using an NLP syntactic

parser. This approach returns a measure of how much a part of a document deals with a certain

topic. These measurements are obtained by assigning a score to each SAO, according to suitable

weights for Subject, Action, Object and to a set of dictionaries related to the functionalities to be

investigated. These scores can help to detect in the document, among others, sources of potential

inconsistency.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 20 of 76

2.5 Requirements reuse and patterns

Requirements reuse and patterns are specific complementary topics of requirements knowledge

and dependency management. In a nutshell, requirements reuse refers to taking advantage of

requirements knowledge obtained from previous IT projects and later on using this knowledge in

a new one. Software patterns, thoroughly presented by (Schmidt 1996), are attempts to describe

successful solutions to common software problems. In this section, we use the term requirement

pattern to refer to those assets that provide a structured representation to reuse knowledge about

actual requirements. Therefore, we exclude in the term requirement pattern assets related to the

transformation of requirements (mainly, formalization rules and MDD), best practices in RE, way

of writing guidelines, etc. Therefore, boilerplates, grammars and specification languages are not

included in our description of requirement pattern.

The following subsection represents a literature-based background on requirements reuse and

requirement patterns. The second subsection focuses on technology transfer by reporting the

applications of academic proposals of requirements reuse and patterns in industry.

2.5.1 Background on requirements reuse and requirements patterns

This subsection is based on a systematic mapping (SMAP) of research publications, which we

conducted following a rigorous protocol according to the guidelines described in (Petersen2015)

and in (Kitchenham2007). The publications retrieved are from 1995 to mid-2017. We ran an

automatic search of papers in several major digital libraries, including IEEE Xplore, ACM Digital

Library, Springer Link and Science Direct. Our search looked for publications that included the

words “reuse” or “pattern”, and “requirements” either in the title or in the abstract and it was

tailored to the capabilities of each library. After filtering by title, abstract, and quick read protocol,

316 publications were selected. From them, 79 were found to use requirement patterns, showing

the importance of patterns as a vehicle for requirement reuse, especially in the last 7 years (2010–

2017) of research. This timespan covered 47 out of the 79 (60%) publications. We grouped the

79 publications into 69 proposals, since there were several papers that dealt with the same

proposal.

In Table 3, we show a representative sample of the publications found. The sample has been

chosen to be able to illustrate each value of each characteristic of a requirement reuse and

patterns approach.

Table 3. Examples of requirements reuse and patterns

Source Artifact Size Abstraction
Meta-
model

Scope Purpose Process
Repo-
sitory

(Bouraga2014) i* models Requirement
clusters

Patterns Yes Social
networks

Specification - Yes

(Caralt2007)

Ontology, use
cases,

interdependen
cies

Requirements Patterns Yes General Specification Yes -

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 21 of 76

(Carrillo-de-
Gea2013)

Natural
language

requirements

Requirements Patterns - General Elicitation,
specification

Specific
process

Yes

(Chung2006) Use cases,
NFR diagrams

Requirement
specifications

Patterns Yes General Specification - -

(Daramola2012) Natural
language

requirements,
classification,

ontology

Requirements Templates - Security Elicitation,
specification

Specific
process

Yes

(Dehlinger2005) Natural
language

requirements,
use cases

Requirement
clusters

Patterns - Agent-based
requirements

Elicitation,
specification

Yes Yes

(Franch2013,
Renault2009)

Natural
language

requirements,
classification,
interdependen

cies

Requirement
clusters

Patterns Yes General Elicitation,
specification

Specific
process

Yes

(Hauksdottir201
2)

Natural
language

requirements

Requirement
clusters

Template
variability
models

- General Elicitation,
specification

Specific
process

Yes

(Jensen2009) Natural
language

requirements

Requirements No - Healthcare
systems
security

Elicitation,
specification

Specific
process

Yes

(Konrad2002,
Konrad2005)

Diagrams,
relationships

Requirement
clusters

Patterns - Embedded
systems

Specification - -

(Mannion1999) Natural
language

requirements

Requirement
clusters

Patterns Yes General Elicitation,
specification

Specific
process

Yes

(Mazo2016)

Natural
language

requirements
structure,
domain
models

Requirement
clusters

Patterns Yes General Specification - Yes

(Pacheco2017) Natural
language

requirements,
classification

Requirements Templates - General Elicitation,
specification

Specific
process

Yes

(Panis2015) Natural
language

requirements,
classification

Requirements Templates - General Specification Specific
process

Yes

(Toval2002) Use cases,
classification,
interdependen

cies

Requirements Patterns Yes Security Specification - Yes

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 22 of 76

(Wahono2002) Natural
language

requirements,
use cases,

interdependen
cies

Requirement
clusters

Patterns - Web
applications

Elicitation,
specification

Yes Yes

(Withall2007) Natural
language

requirements,
interdependen

cies

Requirements Patterns - General Elicitation,
specification

Specific
process

Yes

As represented by the references included in Table 3, the common purposes of all of the

proposals is the elicitation or specification of requirements by artifacts. In the reviewed studies,

requirements were mainly specified in natural language (e.g., Withall2007), use cases (e.g.,

Chung2006; Dehlinger2005), and domain models (Toval2002). More formal representation of

requirements are also used in some approaches, such as i* models (Bouraga2014), ontologies

(Caralt2007) and syntactical structure of requirements (Mazo2016). Other artifacts that may be

reused, which are not strictly requirements, include classifications of requirements in a

requirements specification (e.g., (Panis2015; Franch2013)), relationships or interdependencies

among requirements and other reuse artifacts (e.g., (Franch2013, Konrad2002)).

The size of reusable artifacts varies from individual requirements (e.g., (Daramola2012)) to

requirement clusters (e.g., (Konrad2002)) and further to parts of requirement specifications and

even to complete requirement specifications (e.g., (Chung2006)).

In some approaches, reuse specific requirements or complete requirements specifications without

any abstractions are reused. Other proposals add abstraction to the reuse knowledge by using

templates, patterns or feature models. The lower level of abstraction is applied with the following

techniques: 1) templates that are natural language sentences with no required structure (e.g.,

(Hauksdottir2012)); 2) templates with a basic structure that may include parameters (e.g.,

(Daramola2012, Pacheco2017)); 3) requirements with a required structure that are compliant with

language grammar (e.g. (Konrad2005) applied in (Post2011)). At the highest level of elaboration,

we find patterns (e.g., (Withall2007 Franch2013)) and feature models proposed in domain

engineering (e.g. (Mannion1999)). These approaches are based on the notion of variability of

requirements.

All the proposals incorporating a metamodel do it to formally describe the artifact to be reused. In

addition, some proposals also model with this metamodel the interdependencies and the

arrangement of the interdependencies into a catalogue of reusable artifacts (Caralt2007,

Franch2013; Mazo2016, Toval2002).

There are differences in terms of scope. Most of the published proposals are general even though

the papers give examples of reuse in specific domains. Remaining proposals are specific for a

particular domain, such as for web applications (Wahono2002), embedded systems

(Konrad2002), or security requirements (e.g., (Daramola2012; Jensen2009)), without any aim at

generalization.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 23 of 76

The purpose of the proposals focus on the elicitation or specification of requirements because of

the search criteria applied. Several proposals describe the process for applying requirements

reuse, for instance those by (Pacheco2017, Carrillo-de-Gea2013, Renault2009).

Although most proposals give some ideas about how to structure the repositories of reusable

artifacts, we highlight (Franch2013, Dehlinger2005, Pacheco2017), that give detailed descriptions

of how to construct such repositories and how to classify and identify artifacts that are suitable for

reuse.

2.5.2 Practice of requirements reuse and requirements patterns

The low percentage of research papers on software engineering that include industrial validation

was already reported by (Lam1997a). More recently, the results of the systematic mapping of

reusable knowledge on security requirements by (Souag2015) and the systematic literature

review on requirements reuse (Irshad2017) corroborate the results: in these studies, no more

than 22% of the identified papers performed an experimental validation in industry. In the case of

the 316 publications reported in the previous subsection, only 81 conducted an empirical study to

endorse the proposal and only a few of these studies were carried out in the industry (e.g.,

Eriksson2009; Goldin2013; Rine2000). Considering the 69 proposals that use patterns (see

previous subsection), only 19 included some empirical study, and only 12 had conducted the

study in industry settings. We classify these 12 approaches according to their empirical study

approach as:

● Case studies that test the usefulness of the approach, making special emphasis on the

percentage of requirements that has been reused (Issa2010; Issa2011; Mahmoud2010;

Myklebust2014; Renault2009).

● Interviews of experts that explore the usefulness, advantages and disadvantages of the

approach (Issa2010; Issa2011; Lam1997b).

● Industrial experiences that explain how requirements reuse is being applied in real

industrial settings (Daramola2012; Hauksdottir2012; Hauksdottir2016; Heumesser2003;

Panis2015; Zuccato2011).

2.6 Requirement management systems

The final OpenReq solution aims to provide requirements knowledge and dependency

management functionalities that operate within existing, state of the practice requirement

management systems (RMS). Therefore, we feel necessary to present a survey of the RMS that

currently exist and their characteristics. We describe first the overview of the study and then three

themes that are covered. The full data is available in Appendix.

2.6.1 Overview of RMSs study

First, we describe the OpenReq-relevant functionalities that RMS currently in the market exhibit.

There is a large number of RMS as shown in the list of 91 non-discontinued RMS (Birk2017). Due

to the impossibility to study all of these 91 systems, we used three reports published by consultant

companies in 2016-2017 (Murphy2016, LeClair2016, Beatty2016) and one blog post on the

https://www.forrester.com/Amanda-LeClair

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 24 of 76

subject (Birk2017) to identify the RMSs with significant market share and market presence. The

RMSs selected to be elaborated in this state of the practice were the ones that appear as minimum

in three of the indicated sources and for which we could download a demo version. The tools we

selected are: Caliber, IBM® Rational® DOORS® Next Generation, Helix RM, inteGREAT (now

named Modern Requirements4TFS), Jama, Jira, Polarion® REQUIREMENTS™, and TopTeam.

Our analysis procedure consisted of four intertwined steps that were iterated for each tool as

deemed convenient. First, we read the public documentation on the tools. Second, we watched

available video tutorials. Third, we installed the available demo versions. Fourth, we prepared a

summary describing the relevant aspects of each tool in relation to OpenReq.

Below, we summarize the OpenReq relevant functionalities of the selected tools in terms of three

themes: 1) Requirements Reuse, 2) Interdependency Extraction and Management, and 3) Other

Support Techniques.

2.6.2 Requirements Reuse in RMS

The types of requirement reuse techniques identified in the analyzed tools are the following:

● Copy and Paste (cloning) of Requirements: The basic option of requirements reuse. It

allows to copy and paste requirements between projects, or between different parts of the

same project. The requirements become a part of the project where they are added to and

lose the link to the original one.

● Mapping of Requirements: This option allows to map one (base) requirement to a new

requirement, which is included in the same or different project. The difference with respect

to the copy and paste technique is that the values of the mapped requirements remain

equal with the base requirement. Thus, when a base requirement is changed in a project,

the changes are propagated to all mapped requirements. There are different variants of

this technique depending on which properties or relationships are mapped. It is possible

to provide a functionality to notify the requirements engineer if some of the base

requirements have changed, and, so, the mapped requirement has or will be changed.

There are some tools where the synchronization of changes is not automatically applied

and it may have to be approved by a user after seeing that the mapped requirement is out

of synchronization. To facilitate the use of the feature, three RMS provide a visualization

of mapping interdependencies between requirements.

● Use of Requirement Templates: This option allows to define templates (or types) of

requirements. A requirement can be created from a template. After a new requirement is

created, the requirement properties and the values of properties are independent of the

template in which it is based on. Any changes to the template are not reflected in the new

requirement.

● Use of a Project Template: This functionality allows to reuse the entire structure and all

requirements of a project template by importing this structure and requirements into a new

project. There are tools that include this technique that allow to the user to either preserve

the consistency between the project template and the newly created project or discard the

consistency or not.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 25 of 76

● Use of Requirement Libraries: The RMS allows to define requirement libraries in which

groups requirements are going to be reused together. This functionality is interesting

especially in the case of requirements related with regulations, security rules, etc. Tools

that include this functionality can preserve consistency between the changes in the

libraries and the projects where they are used or discarded.

The summary of how the analyzed RMS cover the different requirements reuse techniques can

be found in the Appendix 2 Full details of RMS comparison. Next, we highlight the main

differences.

Six out of the eight studied RMS provide the “Copy and Paste of Requirements” technique. The

difference between the RMSs is what properties of the requirement are being copied to the new

requirement. Specifically, if the interdependencies (or links as called in most of the tools) are also

copied. For instance, Caliber allows deciding whether or not a child requirement is cloned, but

other interdependency types cannot be cloned. DOORS allows to include in the copy all

interdependencies. For Modern Requirements4TFS and TopTeam, we can say that they have the

functionality but on the basis of the demo version we downloaded and the documentation that we

could access, we cannot say which parts of the requirement they allow to be copied.

Five out of the eight tools we examined have an implementation of the “Mapping of Requirements”

technique. The differences between the tools are the following. On one hand, the properties and

interdependencies with other elements that remain mapped are not the same in all five tools. Jira

does not allow propagating changes in between mapped requirements, yet a specialized plug-in

exists for implementing this feature. In Caliber, only the description of the requirement can be

mapped. Jama allows also to map any property value of a requirement. Another difference among

the tools is in how the changes in the base requirement affect the mapped requirements. In the

case of Caliber, the changes are automatically applied. For instance in Jama and Polarion, the

user has to accept to synchronize the mapped requirement. Jama allows to define reuse rules to

state which parts of requirements must be mapped and when to apply the synchronization of

mapped requirements when base requirements change.

The use of custom requirement templates is implemented only in DOORS and Modern

Requirements 4TFS. In DOORS we were able to create such templates, but it was not possible

to test if they can be shared with other projects and we did not find any document that clarified it.

In the case of Modern Requirements 4TFS, it has the possibility to export FAQ. These FAQ are

a library of questions, organized by subjects (e.g., security, portability, usability) that can be

helpful during the elicitation of requirements. It is possible to associate to each question one or

more reusable requirement. The problem we found in this functionality is that we could not find

any initial FAQ template. Thus, a company using the tools should establish their own library of

questions and reusable requirements.

Concerning the use of project templates, seven out of the eight tools have this possibility (all

except Caliber). A project template defines the project properties and the types of requirements

that the tool manages in order to specify templates suitable for different types of projects (Agile,

CMMI, Traditional, etc.) In Modern Requirements 4TFS and TopTeam, it remained unclear if they

allow to define new project templates. Finally, it is important to note that in Jama this functionality

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 26 of 76

is provided by the duplication of a project, which can remain synchronized with the changes in

the original project.

The concept of library of reusable requirements does not exist in any tool. However, in Modern

Requirements4TFS, it can be simulated with the templates of questions and reusable

requirements that can be exported and imported as templates allowing the reuse of requirements

across different projects. Also in Jama, it can be simulated by the use of containers of reusable

requirements, or by the use of project duplication, in the case of projects that group groups of

related reusable requirements.

2.6.3 Interdependencies Extraction and Management

First, we define the techniques related with interdependencies extraction and management in the

analyzed RMS:

● Interdependencies Extraction. RMSs in general allow extracting requirements from text

documents in formats such as Word or Excel. However, interdependencies extraction

means adding interdependencies between requirements from this kind of documents

automatically. Although we have not found any tool that provides this functionality, we

include this feature due to its relevance for the OpenReq project.

● Interdependencies Definition. When an interdependency is defined between two

requirements, the type of interdependency can be stated. The types of interdependencies

vary among RMS, and some RMS allow defining new interdependency types.

● Interdependency Types Semantic Definition. The terms used for dependency types

differ. For the users of RMS, it can be confusing to specify interdependencies, if they do

not understand the meaning of these terms and, thus, types. There are interdependencies

types that are to be defined between requirements and others that are to be defined

between requirements and other artifacts managed by the RMS. The semantic definition

helps in applying correctly the interdependency types.

● Interdependencies Traceability. The requirement engineers using a RMS may be

interested to know transitive interdependencies in which a requirement is involved in, or

all interdependencies in a project. Typically, this is done by providing a traceability matrix

or impact analysis grids.

● Tagging of Suspect Interdependencies. When a requirement involved in an

interdependency changes, the type or meaning of the interdependency can be affected.

An interdependency in these cases is tagged as suspect.

The summary of how the analyzed RMS cover the different techniques for the management and

extractions of interdependencies can be found in the Appendix 2 Full details of RMS comparison.

Next, we highlight the main differences.

Before addressing the techniques and how they are provided by the analyzed tools, it has to be

noted that the tools do not use the wording “interdependencies”. This marks an important

difference between research in requirements engineering and practice. Six of the eight tools call

interdependencies “Links”. Caliber calls interdependencies “Traces” and Jama calls them

“Relationships”.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 27 of 76

Concerning interdependencies extraction from text requirements, none of the eight tools has this

functionality. Instead, all RMS allow defining interdependencies. There are multiple types of

interdependencies and the types vary between the different RMSs. In general, the RMSs allow

creating new interdependency types. However, in Caliber, that just allows to create Parent/Child

and Traces interdependencies it is not possible to create new interdependency types and in the

case of Modern Requirements 4TFS and Polarion we could not determine from the demo version

and documentation if it is possible.

Related to the specification of interdependencies, one problem is the semantics of the predefined

interdependency types. Only Helix RM shows the definition of the interdependency types to the

user when specifying an interdependency using the type. In the case of DOORS, the definition

exists but it is presented only in the interface provided for the administration of interdependency

types. Finally, in the case of TotTeam, it was possible to add a definition for a new

interdependency type, but it seems that predefined types do not have such definition. In the other

tools, we could not find any definition for the interdependency types. Although some

interdependency types should be defined between specific requirements types, e.g., between

non-functional and functional requirements, the tools do not enforce it. Only DOORS and

TotTeam allow to define constraint rules that once defined the tools enforce.

Concerning traceability, all the eight analyzed tools provide one or more types of traceability

matrices and an impact analysis grid. Jira does not provide this by default, yet these functionalities

can be achieved by installing separate plugins. Functionalities of these tools vary in between

implementations. When the RMS present interdependency matrices, they show qualifications in

the interdependencies, such as the direction of the interdependency. Also all the tools allow to

know the interdependencies where one requirement is involved. This visualization can be done

when the requirement is edited or when the requirement is inspected jointly with the rest or

requirements in a tree or grid view of requirements (in this case interdependencies are seen

tagged as an icon at the side or the requirement identifier).

Interdependencies may become suspicious when one of the requirements involved in an

interdependency changes. Jira allows sending notifications whenever a requirement changes,

which allows for tracking also interdependency changes. There are two tools, DOORS and

ToTeam, where it has to be configured if the user wants that this qualification is automatically

tagged once the change occurs. In Caliber and Jama, the tagging is automatic. In the case of

Helix RM and also in the other tools mentioned before, it is possible for the user to define an

interdependency as suspicious manually. In the case of Modern Requirements 4TFS, we did not

find in the demo version or documentation about the possibility of tagging suspicious links.

An additional issue with suspicious interdependencies is that as they can appear in a transitive

closure of interdependencies - when one interdependency becomes suspicious, it could be

necessary to also tag other indirect interdependencies. In tools as DOORS, Polarion and

TopTeam we have found a mechanism to analyze and apply recursively the suspect tag in

interdependencies.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 28 of 76

2.6.4 Support Techniques - Additional functionalities

In this subsection, we group additional functionalities in the selected RMS that help in the

definition of requirements. We define these functionalities as:

● Glossary and natural language analysis support. There are RMS that allow to manage

a glossary of terms, which is used to help in the definition of requirements. Specifically,

there are RMSs that highlight the terms in the glossary when requirements are defined

and show their definitions by selecting the word. In our analysis, we also looked for

functionalities to help in the analysis of natural language description of requirements.

● Recommendation of requirements. Recommendation of requirements consists of

recommending requirements to the users of a RMS that could be interesting to be included

in the requirements specification of a project. Although we have not found any tool that

provide this functionality, we include this feature due to the relevance for OpenReq project.

● Search. A RMS usually allows to search requirements that contain certain words in their

description or on the basis of requirement properties.

● Links to other Requirements in Requirement properties. There exist tools that allow

to add links to requirements from requirement properties, usually in the description of the

requirement. These links are not the typical interdependencies addressed in the

subsection above, but links that allow to quickly navigate in the tool interface from one

requirement definition to another one, which is related some way.

● Dashboards. Dashboards show project information about the current status and progress

of a project with respect to the requirements defined for it. The information provided may

be requirements satisfied, requirements pending, values of specific metrics on the project,

requirements assigned to a user and recent changes in the project.

● Customization. Many RMS allow building extensions to accommodate versatile needs.

Here, manufacturers can offer open Application Programmer Interfaces (API) or Software

Development Kits (SDK) to encourage customization.

● Integration. Requirements management tools can be integrated with other tools that are

used in enabling the software development environment workflow. These can include

issue trackers, version control-, code review- and continuous integration tools.

● ReqIF format. ReqIF is an XML file format that can be used to exchange requirements,

along with its associated metadata, between software tools from different vendors. The

requirements exchange format also defines a workflow for transmitting the status of

requirements between partners.

The summary of how the analyzed RMS cover the additional functionalities can be found in the

Appendix 2 Full details of RMS comparison. Next, we highlight the main differences.

Only three of the eight tools provide glossaries for specific projects, but no-one does the natural

language analysis of requirement description. Caliber allows to do a certain analysis of

requirements description regarding the glossary, and highlighting in text ambiguous terms and

words in the glossary. That is, when requirements are written, words are automatically colored to

indicate use of a glossary term or alert of an ambiguous term that you should replace with a better-

defined term. DOORS stand out because it is possible to create interdependencies between

https://en.wikipedia.org/wiki/Extensible_Markup_Language

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 29 of 76

requirement parts and terms in the glossary. TopTeam suggests words from the glossary to be

included in requirements definition.

It is important to remark that we did not find any requirements recommendation functionality in

any of the eight tools we analyzed. The tool that is closest to offer this functionality is Modern

Requirements 4TFS: FAQ questions and reusable requirements associated could be used as a

repository for recommendations (see Requirement Templates above).

Searches of requirements are possible in all the eight tools. The differences are in the possibility

of saving queries, that is clearly possible in Caliber, Jira and Modern Requirement 4TFS. Another

difference is in the possibility to add relevant tags to requirements that facilitate searches. This is

possible in DOORS, JIRA and Modern Requirements 4TFS. Finally it has to be noted that in the

case of Jira, Modern Requirements 4TFS, it is possible to define global queries that are shared

among all users assigned to a project or personal queries. The rest of the tools have searches

that allow to filter requirements that contain certain terms in the requirements body text or some

of their attributes.

The possibility of adding links to a requirement in the definition of another requirement is possible

in DOORS, Jira, Polarion and TopTeam.

Dashboards with a summary of a project exists in all the RMSs except in Caliber. All RMSs allow

configuring the dashboards, and to include or exclude widgets with the contents that is interesting

for the particular user and project.

Helix RM, Jama, Jira, Polarion and TopTeam offer APIs for accessing the requirements data.

Only Caliber, DOORS, Jira and Polarion offer a SDK that allows building own extensions to the

software itself. In the case of Modert Requirements4TFS, we have not found evidence of any type

of customization.

Plugins built for Jira offer integration with most common software development- and project

management tools. Helix RM, Jama and Polarion can be integrated with some systems, including

Jira. Modern Requirement 4TFS only can be integrated with other products of the same provider.

DOORS support integration by means of Open Services for Lifecycle Collaboration that facilitates

a wide variety of integrations. Finally, Caliber provides traceability from requirements to artifacts

managed by other requirement management systems as HP Quality Center.

Finally, only Polarion and Doors offer support the ReqIF format for importing or exporting

requirements by default. Plugins are available for enabling this feature are available for Jira.

2.7 Software product lines, variability and knowledge-based

configuration

As the final topic of this state of the art, we describe the field of Software Product Lines (SPLs)

from where we bring systematic reuse and modeling techniques. SPL engineering covers

variability and variability modeling as its subtopics. As a related topic, we utilize knowledge-based

configuration that is a more general-purpose approach applicable to SPLs and beyond.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 30 of 76

2.7.1 Software product line, reuse, and variability

To enable the commonality and diversity in software to be addressed, SPLs, which are also

synonymously called software product families, have become an established software

engineering practice, as evidenced by several textbooks (Weiss1999, Bosch2000,

Clements2001, Pohl2005) although the notion of software product line dates all the way back to

1960’s. The products of an SPL can be any kinds of software systems, such as embedded

systems, software products, or digital services. Although what an SPL is not unambiguous, a

definition of an SPL is as follows: “a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or mission

and that are developed from a common set of core assets in a prescribed way” (Clements2001).

Another definition of an SPL is the following: “A software product line consists of a product line

architecture, a set of reusable components and a set of products derived from the shared assets”

(Bosch2000).

As a set of products define an SPL, the similarities within and differences between these products

are essential to the characterization of an SPL and are typically associated with commonality and

variability, respectively. Commonalities are often realized through reuse, so that the same artifact

is used for different products in the same manner.

Variability is defined as "the ability of a software system or an artifact to be efficiently extended,

changed, customized or configured for use in a particular context" (Svahnberg2005). The different

products of an SPL are manifestations of variability, where variability is taken advantage of

because of the differences it offers. The activity of realizing differences, as a part of application

engineering, is in general referred as resolving variability, resulting in different variants. To

address the phenomenon of variability, software variability management is a key activity within

SPL engineering, thus forming a key characteristic distinguishing it from the development of a

single system. Here, variability management means general activity to cover all activities or

concerns of variability, from the identification of variability, through realization, to maintenance.

Variability management is synonymous, e.g., with variability handling (Galster2014).

Within the broader context of variability management, a variability model is a means and an

artifact to represent the variability of software to the stakeholders. The stakeholders include

internal stakeholders, such as software developers who develop the software and variability

therein, managers who make the decision about the software that is developed, sales

representative who are at the interface with customers, as well as external stakeholders who

make the decision to buy the software and users who use the software but can also be in the role

of a customer. Variability models cover any kinds of representations about variability. Broadly,

variability models range from informal sketches or informal natural language specifications to

various kinds of models using textual or graphical notations based on rigorously defined syntax

and semantics (Raatikainen2017). We use the term variability model to refer to any model that

contains unresolved variability, thus being developed during the domain engineering phase and

forming an input to the application engineering phase, when variability is resolved.

Most probably, the best known example of a variability model is a feature model (Kang1990,

Kang1998), which emerged in the 1990s, although much of the research seems to focus on the

emergence of SPL research in the 2000s (Benavides2010, Hubaux2010). An example of a simple

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 31 of 76

feature model as by a feature diagram of a mobile phone is shown in Figure 1. A feature model

conveys many of the key concepts of variability modeling. A feature in a feature model can be

seen as a characteristic of a system that is visible to the end user (Kang1990) or, more generally,

a system property that is relevant to some stakeholder and is used to capture commonalities or

discriminate among product variants (Czarnecki2005). A feature model is typically represented

as a graphical diagram arranged as a set of features and relations between a parent (or

compound) feature and its child features (or subfeatures) and cross-hierarchy constraints

(Benavides2010). The relationships represent variabilities such as optionality, meaning that a

feature can be either selected or left out, or alternatives, meaning that one of the alternatives

needs to be selected.

However, several additional concepts, adaptations, and extension have been proposed

(Tiihonen2016, Raatikainen2017). There are also several formalizations of feature model

(Schobbens2007). Specifically in OpenReq, we take advantages of Kumbang feature model

conceptualization (Asikainen2006) as the basis for a feature model. Kumbang specifies the

subfeatures of a feature tree as “part-of” relationships and allows defining separate is-a

hierarchies. The Kumbang constraint language can be used to express cross-branch

relationships. Kumbang also supports feature attributes. Finally, a feature model is provided with

numerous different analyses (Benavides2010).

Figure 1. An example of a feature model based on the extensions of a feature model
(Benavides2010) in (Myllärniemi2014)

2.7.2 Knowledge-based configuration (KBC)

Knowledge Based Configuration (KBC) emerged from various domains of physical products, such

as computers and elevators. Model-based approaches to configuration knowledge representation

provide a clear separation between domain knowledge and corresponding problem solving

knowledge (Tiihonen2017). Hence, they avoid intermingling of both knowledge types. This

intermingling has been shown to significantly increase related development and maintenance

efforts (Soloway1987).

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 32 of 76

KBC is a relatively general and domain-independent approach. One hand, a large number of

commercial general-purpose knowledge-based configurators, also known as configuration

frameworks exist. For example, already in 2005, 30 vendors were identified based on their Web

pages (Anderson2005). Gartner Group estimated in 2013 that Configure, Price and Quote

application vendors generated $300M in revenue in 2012 (Sengar2013). On the other hand, an

active KBC research community has been established: the Configuration Workshop series was

arranged in 1996 and yearly since 1999 it has been the primary meeting venue. Other important

forums are journal special issues (Darr1998, Faltings1998, Soininen2003, Sinz2007,

Tiihonen2010a, Felfernig2011).

Technically, during the product development process of configurable products (cf., domain

engineering), KBC captures variability, or configuration, knowledge systematically to a knowledge

base referred to as a configuration model that a tool can utilize for product specification during

the configuration task (cf. application engineering). Resolving variability in the configuration task

utilizes a pre-designed architecture and components; no manual work such as the design of new

assets (e.g., components) is required (e.g. Tiihonen1997a, Sabin1998).

Over the years, three trends in modeling variability in KBC can be identified. First, configuration

knowledge can be directly represented as constraint satisfaction problems, production rules, logic

programs, etc. representation mechanisms of the applied problem-solving method

(Stumptner1997, Sabin1998). Second, individual central phenomena for modeling configurable

products have been identified and conceptualized. Here, components are the building blocks of

products in the sense that products (product individuals) consist of components (component

individuals). Well-known approaches include connection-oriented (Mittal1989), resource-based

(Heinrich1991), structure-based (Cunis1989), and function-based (Najmann1992) approaches.

Third, the unified approaches combine the earlier ideas into a covering ontology or

conceptualization. Two widely cited and fundamentally similar conceptualizations are those of

Soininen et al. and Felfernig et al. In the conceptualization of Soininen et al. (Soininen1998),

configuration model knowledge specifies the entities that can appear in a configuration, their

properties as attribute-value pairs, and the rules on how the entities and their properties can be

combined. Individuals (instances) of configuration model concepts describe individual

configurations and, thus, represent configuration solution knowledge. Finally, requirements

knowledge specifies the systematized requirements on the configuration to be constructed. The

conceptualization covers connection-, resource-, structure-, and function-based approaches and

defines corresponding main concept types that are furthermore organized in a classification

hierarchy. Constraints are an important part of the conceptualization. While the Soininen et al.

conceptualization is general, the conceptualization of Felfernig et al. (Felfernig2000a,

Felfernig2001) is provided with an operationalization as UML stereotypes and Object Constraint

Language (OCL).

Many commercial and research configuration frameworks utilize Constraint Programming, i.e.

they represent the problem to be solved declaratively as a Constraint Satisfaction Problem (CSP).

A constraint satisfaction problem is a tuple (V, D, C). Here, V is a set of finite domain variables, V

= {v0, v1, …, vn}. Each variable has a (usually finite) domain that specifies the possible values of

the variable, and the set of domains is D, D = {dom0, dom1, …, domn}. C is a set of constraints

specifying restrictions on the allowed combinations of variable value assignments. A solution to a

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 33 of 76

constraint satisfaction problem is a set of assignments to each variable {v0 = x0, v1 = x1, …, vn =

xn} such that each xi domi and the assignments are consistent with the set of constraints C

(Mackworth1985).

Answer set programming (ASP) makes it possible to express the problem as a theory consisting

of logic program rules with clear declarative semantics, and the stable models, i.e., the answer

sets of the theory correspond to the solutions to the problem (Simons2002). Programs that follow

the ASP paradigm are a generalization of normal logic programs. A generalized and unified syntax

of ASP programs called ASP-Core-2 has been defined (Calimeri2012) and adopted by many ASP

solvers. Optimality criteria, variables and built-in functions can be defined. The syntax of ASP

programs is close to Prolog, but the computation method via model generation is different

(Gebser2011).

More recently, KBC has evolved to include more advanced topics, such as the following ones

relevant for OpenReq:

● Interactive scenarios, especially when human user is involved, require fast response

times. Sometimes reasoning engines that are based on compiled knowledge

representations, such as binary decision diagrams (BDDs) (Andersen et al. 2010), are

applied to more efficiently determine if a solution exists or if specific selections are still

possible.

● When no solution exists for a given set of customer requirements, conflict detection

(Junker2004) and diagnosis approaches (Bakker1993, Felfernig2012) can be applied to

assist users in resolving the conflicting requirements and to find a suitable solution. In this

context, recommendation technologies can also be applied to determine personalized

diagnoses in situations where no solution meets the preferences that the user specified

(Felfernig2009).

● Existing configuration environments usually support a single user configuring a product.

Support for group-based configuration where groups of users make the decisions has

been identified as an emerging topic (Tiihonen2017). One example scenario is software

release planning: a group of stakeholders has to decide on which requirements are

implemented in which software release.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 34 of 76

3 Concepts and technologies

In this section, we introduce the concepts and technologies that will be adopted in the OpenReq

approach for requirements knowledge and dependency management work package and form

the basis for software architecture and services that realize the approach.

3.1 The concept of a requirement

The concept of a requirement is in general somewhat ambiguous and we adopt a relatively

general notion of a requirement rather than limiting to a specific definition of a requirement. We

consider each individual requirement to be a single entity. A requirement is further characterized

as roadmappable, meaning that a requirement is an entity that is decided to be implemented at

some point of time, e.g., in a specific release, or disregarded. For clarity, we presume that each

requirement has a separate unique identification (id) and content. The content describes the

requirement in human-understandable form, often textually. Each individual requirement is

presumed to be unique for a project or product under development.

A requirement type can define a set of named properties with values. Archetypical properties

include priority, planned release, effort or assignee. In particular, a requirement has at least

implicitly a status as a property that indicates whether the requirement has been implemented.

However, the actual property types are context dependent and no single property is applicable to

all contexts. Therefore, we allow any set of properties and do not require any specific property.

It is possible to structure individual requirements hierarchically. A more general requirement can

consist of a set of more detailed requirements that we refer to as a part-of hierarchy. For example,

an epic can consist of a set of user stories, which is a part-of relation. In addition, a requirement

can have interdependencies beyond hierarchical part-of relation to other requirements such as

depend on or conflict with (cf. the section about interdependencies above).

We aim to include relevant interdependency types from the existing literature. In addition to

aforementioned hierarchy and requires interdependencies, similarity, the “increases values of”

and “decreases value of” or the “increases cost of” and “decreases cost of” relationships seem to

be relevant to be included. Overall, the approach of Dependency engine aims to be flexible to add

new interdependency types but we also aim to keep the conceptualization simple and not to

introduce concepts that have not been provided with practical utility. For example,

interdependency types should be relevant in the OpenReq trials.

It is also possible to define interdependencies between properties of requirements especially for

the purposes of release management. For example, two requirements should not be included in

the same release and the interdependency is then defined between the release-properties

between these requirements: the release property value of the two requirements should not have

the same value. These interdependencies can be characterized more generally as constraints

because they are not interdependencies between two requirements but depend also on the

property values of requirements. The exact set of such constraints will be defined over the course

of the project, but the constraints below are considered as a tentative set:

● A property value is fixed. For example, release must be "1".

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 35 of 76

● Larger or smaller than N. For example, requirement A must not be in an earlier release

(smaller) than release "3" -- i.e. the release property must be 3 or larger.

● Requires (and can be in same release). For example, Requirement A requires

Requirement B to be in the same or earlier release so that release property value of

requirement A must be the same or smaller than the value of requirement B.

● Requires before. Same as above requires but cannot be in the same release but needs to

be in the earlier release.

● Excludes local. For example, if requirement A is in release N (has value N for release-

property), requirement B must not be in release N (must not have value N for release

property).

● Excludes global ("not at all"). For example, if requirement A is included to any release,

requirement B must not be in any release.

● Same release (multiple requirements). Requirements A,…,N must be in the same release.

● Sum of property values smaller/larger. For example, the sum of effort-property values of

requirements that have release-property value “1” must not be larger than 100.

Dependency engine operates primarily with, and in the context defined by the state-of-the-practice

large-scale requirements management systems (RMSs). An example of dedicated RMS is Doors

but issues trackers, such as Jira, are also used especially in large-scale open source projects.

Such RMS document and manage the requirements of a system under development. Essentially,

a requirement in the RMS consists of similarly as described above of a unique ID; a phrase, figure

or something to describe its content; properties or meta-data; and interdependencies to other

requirements as a special class of properties. However, we are not restricted to any RMS but we

are compliant with any similar, structured data source such as a dedicated database of OpenReq

or structured messages.

Specifically, we aim to be compliant and adopt the basic idea of the ReqIF standard that has

synthesized a widely accepted view of what forms a requirement, and seems to be compliant with,

e.g., the Jira issue tracker. More specifically, individual requirements are instances of requirement

types that correspond in ReqIF to SpecObject and SpecType, respectively. The requirement

properties correspond to the AttributeDefinition and AttributeValue of ReqIF. Again, both part-of

and interdependencies are compliant with ReqIF—binary interdependencies between individual

requirements can be instantiated from relationship types, by SpecRelation and SpecRelationType

of ReqIF and SpecHierarchy allows hierarchical structuring of SpecObjects.

3.2 Representing requirements by a feature model

The internal approach for Dependency engine is based on using requirements data stored in a

RMS and using internally for Dependency engine the constructs of a feature model and its

formalizations to represent this data2. A RMS focuses on managing each individual requirement,

including their properties and relationships. However, the entire system is defined by a set of

requirements as roadmappable entities with properties, and relationships to each other that

constitute a model. Such a model is similar to a feature model. The rationale for constructing a

2 For a concrete example, see D5.2: Requirements Dependency Engine Version 1

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 36 of 76

feature model is that a feature model is well-researched approach that is provided with various

kinds of analysis as well as existing analysis and inference tooling.

In order to represent requirements by a feature model, we make each requirement correspond to

exactly one feature of a feature model. The properties of a requirement correspond respectively

to the attributes of a feature. For example, a requirement “A” with a property “release” and value

“1” becomes a feature “A” with the attribute-value pair “release” and “1” in the feature model. The

part-of (or consist of) relationships of requirements constitute the tree hierarchy, thus

corresponding to subfeature-relationships. For example, when an epic requirement has user

stories as its sub-requirements, the feature model representation will result in a model fragment

where the epic is the parent feature and the user stories are its child features by part-of

relationships. We apply part-of (or refines) rather than is-a relationships for hierarchy since the

latter ones seem not to be common between requirements although could be supported. In order

to construct the tree, a generic root is defined that, in practice, is the application or project itself,

which has then all requirements underneath.

Different types of requirements can be represented by the concept of feature subtyping. For

example, user requirement and technical requirement can be different subtypes. Each subtypes

defines, e.g., its properties (or attributes).

Other relationships among requirements correspond to the cross-branch constraints. For

example, requires interdependency can be expressed by “present” constraint that states that the

presence of requirement “A” requires the presence of requirement “B”. Likewise, the constraints

can be defined between the attributes of features in the feature model. In general, feature models

allow expressing different constraints that depends on the selected feature model dialect and

these constraints can be adapted then for the purposes of OpenReq.3

The resulting feature model is then a variability model. Variability denotes the status of

requirements -- each new requirement becomes at first optional (cardinality 0-1) for the model.

Then, various analyses can be carried out by selecting requirements to be included in a

configuration. A configuration denotes requirements that are ready at a certain point of time and,

thus, corresponds to a planned or an existing release. That is, a release management includes

therefore a configuration problem: For a selected set of requirements, find other requirements

that need to be taken into account because of the interdependencies (or other constraints). Details

of interdependencies and constraints are elaborated above but, for example, if all requirements

are set a target release and effort, for each release it can be analyzed if the effort is within the

limits of available total effort for a release; are all interdependencies adhered to such as required

requirement is not unintentionally in a later release or locally excluded requirements are in

different releases. It is also possible to suggest repairs if something is not consistent such as

changing target release of requirements.

3 We use and possibly extend Kumbang constraint language
http://www.soberit.hut.fi/KumbangTools/language/constraint-language.txt

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 37 of 76

3.3 Formalization of requirements by an ontology

Dependency engine will be based on providing requirements with formalization. For the

formalization, we will develop an ontology that is compliant with ReqIF. The ontology will also be

provided with a mapping to the Kumbang feature model conceptualization and language

(Asikainen2007), which has already been provided with a formal semantics. The Kumbang

concepts are also used as an internal representation for the requirements and not exposed to any

external service. Kumbang seems to be able to represent all concepts that are represented in a

RMS as detailed above. For example, properties can be defined freely and a relatively rich

constraint language exists. Additional details about Kumbang can be found in the external link to

KumbangTools webpage (http://www.soberit.hut.fi/KumbangTools/).

The ontology focuses on the properties, structure and interdependencies. Figure 2 shows a

preliminary ontology that will be refined and finalized during the project (Task 5.4 and Deliverable

D5.3 of OpenReq). We adhere roughly to the ReqIF standard although we simplify something but

also give more specific and concrete definitions. The project part of the ontology that could include

release, stakeholder and other concepts that, however, are not yet defined, because they are not

at the core of this work.

● Requirement is an identifiable entity as described by its content that is an inherited

characteristic from RequirementType. Content can be text, figure or anything else of type

Object. Each requirement has a unique identification that is string. Content could identify

a requirement by itself but we include identification for clarity.

● RequirementType defines the characteristic of a requirement. For example, Epics and

user stories can be different RequirementTypes.

● PartDefinition is a placeholder that defines a place in the hierarchical structure so that

sub-requirements (or child-requirements) can be attached to any (parent) requirement.

○ Sub-requirement is one kind of interdependency.

○ Roughly, a PartDefinition is an explicit connector for structure.

○ Cardinality is a pair of integers [n,m] that state the number of sub-requirements

needed for the place in minimum and allowed in maximum.

○ Cardinality assumes that all requirements are different.

○ For example [1,1] means that one thing must be there in order for the (parent)

requirement to be meaningful; [0,1] means that the part or sub-requirement is an

optional part. If in a placeholder, there are two sub-requirements, [1,1] means that

either one (but not both) needs to be as a part; and [1,2] means that either one or

both must be there.

● RelationshipType is another interdependence type than those defined by PartDefinition

such as requires or conflicts. The RelationshipType is a binary relation between two

requirements. The relationships can have properties such as whether a “requires” is a soft

or a hard constraint for the system. The ontology defines this in a general manner but a

reference catalogue of RelationshipTypes will be provided.

● Constraint is an additional concept that can express more complicated interdependencies

as described above.

● AttributeDefinition is any kind of property attached to a requirementType. For example,

priority or release is an AttributeDefinition.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 38 of 76

● AttributeValueType defines roughly the value type for a property such as integer for

priority. We do not elaborate property typing further in this part of the ontology. However,

types such as enumerations, a set of primitive types, etc. could be defined.

● Project denotes here generally some additional concepts that are needed but are not

currently in the core of this work or generally structural considerations.

Figure 2. A preliminary ontology to represent requirements

3.4 Interdependency detection

Interdependency detection will combine the identification of explicit and non-explicit

interdependencies in the requirements. By explicit interdependencies, we mean explicit

references in the requirement to other requirements, while by non-explicit interdependencies we

mean those ones that are not explicitly stated in the requirements but that can be identified by

analyzing the requirements both from a syntactic and semantic point of view.

For the detection of explicit interdependencies, we aim at following the approaches used in the

well-known area of cross-references detection and resolution. In the first approach, we will identify

natural language patterns that are used in requirements text to refer to other requirements and

use them to create new interdependencies. This approach will be based on works such as those

of (Breaux2008) and (Palmirani2003). In the future, though, we will consider the possibility to

extract these patterns automatically as done in (Sannier2017).

Regarding the detection of non-explicit interdependencies, first we will identify pairs of similar

requirements. As explained in the Similarity detection subsection of the State of the art and

practice, identifying similar requirements could be used as a basis to identify related requirements.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 39 of 76

As there are several well-known components already developed to detect similar texts in English,

our aim is to select one of these components to be integrated and expanded in OpenReq. The

components we are currently evaluating are:

● Semilar (http://www.semanticsimilarity.org/). It provides an application and an API to

identify similar requirements using different algorithms. The methods offered by Semilar,

which are completely parametrizable, range from simple lexical overlap methods to

methods that rely on word-to-word similarity metrics to more sophisticated fully

unsupervised methods that derive the meaning of words and sentences such as LSA and

LDA to kernel-based methods for assessing similarity. In addition, one can select the

tokenizer, tagger, stemmer and parser to be used as pre-processing (having as options,

for instance, the libraries OpenNLP, Stanford parser and WordNet).

● Gensim (https://radimrehurek.com/gensim/tutorial.html) (GNU LGPLv2.1 license). It

provides an API, which includes implementations for popular algorithms such as LSA, LDA

and RP. Gensim allows loading a corpus of texts to which a sentence can be compared.

The calls to the algorithms are parametrizable.

● Scikit-learn (http://scikit-learn.org/stable/documentation.html) (BSD license). Its API

allows the transformation of texts into vectors, using TF-IDF4 among other algorithms, and

measure the similarity over them using the Cosine measure.

● Cortical (http://cortical.io/). Among its functionalities, it has an API that provides the

Cosine similarity between two given texts. In this case, the method is not parametrizable.

However, we do not discard to add new components to this list if the results of our evaluations

are not good enough.

The second part of non-explicit interdependencies section is to improve and expand the

requirements similarity detection with further features, such as:

● Creating a specific list of synonyms that are domain dependent, so that the similarity

algorithms can know when two words that in principle are not synonyms are actually

synonyms in a specific domain.

● Constructing models that can help to detect interdependencies by relating concepts on

this mode. This is similar to the ontology used in (Zhu2005), but in our model, relationships

will broaden the scope of the previous work, which is focusing on inconsistencies. For

instance, if we know that technologies A and B are incompatible, A and B will be related

in this model as conflicting. Therefore, when these two technologies are using at the same

time in a single project, we can extrapolate that the requirements stating technologies A

and B are actually conflicting and a new interdependency of this type will be created

among them.

4 TF-IDF (standing for Term Frequency - Inverse Document Frequency) computes the weight of the words
in a vector as the multiplication of TF and IDF with the aim of achieving the benefits from both:

● TF assigns a weight proportional to the frequency of the term occurrences in the given text
fragments.

● IDF assigns a weight depending on the number of given texts that include the term (rated to the
total number of texts).

http://www.semanticsimilarity.org/
https://radimrehurek.com/gensim/tutorial.html
http://scikit-learn.org/stable/documentation.html
http://cortical.io/

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 40 of 76

It is important to highlight here the fact that OpenReq project will deal not only with English

language, but also with Italian and German, since the telecom trial deal with text written in the

Italian language and, for the case of Siemens, with text (partially) written in the German language.

This diversity of languages used to write the text analyzed supposes a challenge for the project.

The majority of the existing NLP approaches target the English language, as they are trained and

validated using English text corpora. Although NLP approaches and software libraries exist for

both languages (Basili2015) (Rehbein2012), their performances (e.g., precision) might be inferior

compared to the well-established, English-based ones.

3.5 Requirements reuse via requirement patterns

To achieve requirements reuse, we will adopt the PABRE framework (Franch2013, Renault2009),

which stands for PAtterns-Based Requirement Elicitation, to OpenReq. The core asset in the

PABRE framework are Software Requirement Patterns (SRP). An SRP is a set of requirements

that pursue the same goal in a system to be developed, and where all specific elements of a

certain project have been eliminated and converted into templates. Aside from these templates,

the SRP has other attributes to guide the application of the pattern (e.g., name of the pattern, goal

and keywords). Appendix 3 contains the metamodel of SRPs. Here, to facilitate the understanding

of the structure and use of SRP, we present them through an example, the User Capacity pattern

(see Figure 3), that illustrates the structure of patterns, their attributes and relationships allowed

among them.

An SRP is a pattern that, when applied, produces software requirements related to the objective

(goal) of that pattern. Applying the User Capacity SRP produces requirements related to the goal

of Supporting a required number of users in the system under development.

A goal can be achieved in different ways. An SRP consists of several Forms, each one

representing a different solution for achieving the goal. In our example SRP, its goal can be

attained by defining the user capacity depending on the user profiles (User Capacity by Profile

form), or by defining the global capacity of users, i.e. without taking into account the different types

of users in the system (Global User Capacity form).

Forms are organized into Parts, each of them being a phrase template: a Fixed Part, which is

always applied if the form is chosen, and some Extended Parts, which may be applied or not.

Extended parts are only used if more precise requirements are required in the specification. For

instance, in our example, the fixed part of the first Form is The system shall be able to support

%usersNumber% users (usersNumber will be substituted in applying the SRP by “any number of”

or by an integer greater than 0). The extended parts allow to specify the growth in number of

users of the system. The first one states the growth by amount, whilst the second one states the

growth by percentage.

Both fixed and extended parts are similar from a syntactic point of view. They are composed by

a phrase template, i.e. the text to be used as a requirement and, if necessary, some optional

Parameters to be instantiated when applying the pattern, e.g. usersNumber in the example above.

Parameters have established their Metric, and eventually a correctness condition Inv (see these

on the bottom of Figure 3) to define the values they may take.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 41 of 76

Figure 3. Software requirement pattern example

Usually, fixed and extended parts must conform to some Restrictions for declaring multiplicities

or dependencies among parts. In the User Capacity SRP, aside from restrictions on the possible

number of appearances of each part in a specific SRS, there exist restrictions on the parameters’

values in each application. For instance, in the second form of the example, the fixed part can be

applied more than once in an SRS as long as the values assigned to the parameter userProfile

are different. This allows to state restrictions on the user capacity of the system for different types

of profiles, such as Administrator or End-User.

There is also another type of soft restriction that allows giving recommendations to maintain the

consistency of the SRS. One example of such a restriction is using the same values for the

userProfile in each application of SRP parts that uses this parameter (not only those ones of the

example SRP, but also in its appearance in other SRPs such as Authorization and Online Help).

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 42 of 76

There exist dependencies among SRP in the same way as they exist among requirements. The

example SRP is involved in two dependence relationships: the first one with the Concurrent User

Capacity SRP, as there is a clear relationship among the number of users to support and the

number of concurrent users to support; the second one with the Authorization SRP (provided the

User Capacity per Profile form of the example SRP is used), since it allows defining the user roles

of the system to develop.

Finally, SRPs are classified using Schemas, which are hierarchies of classifiers that facilitate the

organization of SRP. It is possible to classify SRP following several schemas. The SRP in Figure

3 is classified according to two different classification schemas: ISO/IEC 25010 and its previous

version ISO/IEC 9126-1. This classification makes the use of the catalogue easier according to

both standard versions. These schemas also allow joining, in one classifier, SRP that may be

applied as a group, and that address a same functionality or describe the same regulation required

in the new system.

In OpenReq, we will adapt this structure of SRP to the needs of the project. For that, of course,

we will need a catalogue of SRPs. The population of this catalogue will combine automatic

extraction with expert assessment. We envisage three different ways in which this catalogue of

patterns could be used in OpenReq:

1. Browsing / Searching the SRP catalogue. The browsing approach is based on the use of

the SRP catalogue using one of the classification schemas of the catalogue and/or the

relationships defined among SRPs in the catalogue. The browsing of the catalogue is

optionally complemented by a search approach, which allows identifying the SRPs that

have in their definition the terms used in the search.

2. Propose SRP that are dependent. Given a requirement, using a similarity algorithm it will

be possible to recover similar SRP (by analyzing the templates in the SRPs with the given

requirement). Then, once we know the similar SRPs to a given requirement, if they are

dependent to other SRPs, we can propose these dependent SRP so they are reused. For

instance, R_1 is similar to a template in the requirement pattern SRP_2, which is

dependent on the requirement pattern SRP_3. In that case, SRP_3 could be proposed to

be reused for R_1.

3. Propose SRP the are related. Again, given a requirement, using a similarity algorithm it

will be possible to recover similar SRP (by analyzing the templates in the SRPs with the

given requirement) (e.g., R_1 is similar to a template of SRP_1). Then, if SRP_1 is in

classifier C_1 other SRPs in the same classifier could be proposed for reuse (e.g.,

SRP_2). So, for R_1 , SRP_2 will be proposed since they are both under the same

classifier. A similar approach could be used for the keywords. If SRP_1 has keyword K_1,

we can look in the catalogue for other SRPs that have keyword K_1 (e.g., SRP_3), and

these SRPs could be proposed for reuse. So, in that case, for R_1 , SRP_3 will be

proposed for reuse since they both are about keyword K_1.

3.6 Algorithms and technologies

The aforementioned mapping to feature model provides us with further existing mappings to

representations by ASP and CSP. As for interdependency detection, the technology will be

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 43 of 76

selected among the components presented in the previous section. Generally, the

conceptualization and mappings to provide us with the formal semantics are in the core of our

work and we apply, experiment and expand the algorithms and capabilities of existing

technologies rather than develop entirely new ones. For example, Choco solver (see below)

implements different algorithms that we can apply and experiment with.

The applied technologies will be based on commonly applied technologies in a micro-service

architecture as well as existing research results. In more detail, the following technologies will be

utilized

- Choco Solver (BSD license) www.choco-solver.org/

- KumbangTools for datamodels (BSD license version excluding Smodels)

www.soberit.hut.fi/KumbangTools

- Configurator as a Service (CaaS) (BSD license) (Myllärniemi2012)

- One of the following (Semilar, Gensim, Scikit-learn, and Cortical) as the basis of the

interdependency detection.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 44 of 76

4 Dependency engine architecture

This section describes the planned software architecture for the software services that realize the

requirements knowledge and dependency management approach. These services are

collectively called Dependency engine.

4.1 Dependency engine context

Dependency engine operates in the context of logically two different stakeholders and systems.

A view of the context is shown in Figure 4 below.

There are two kinds of stakeholder roles that indirectly interact with Dependency engine

● A requirements manager (or engineer) is responsible for eliciting, analyzing, and

managing the requirements, including the properties and relationships of the

requirements. In particular, the requirements engineer is responsible for the changes. This

task is assisted by Personal recommender system (WP3) and Requirements intelligence

system (WP2), and the requirements are stored in a RMS.

● A product manager makes decisions about what requirements in more general. The

product manager is, in fact, a group of people or she interacts with a group of people.

Therefore, the actions can include, e.g., voting or other negotiations about releases for

which Group decision engine (WP4) is developed for. The product manager uses the

existing RMS where the requirements are stored but can also have a dedicated own

system.

Dependency engine has no direct (human) user interaction other than possibly for IT system

administration related tasks. Therefore, there is no user interface but interfaces are REST-based

calls between different systems and the calling systems shall contain the user interface.

Dependency engine operates in a context of other systems, namely a RMS and a release

management system, or product management system in general as shown in Figure 4. The

systems are logically different from the point of view of Dependency engine and, therefore, treated

as two systems. In practice, for example Jira can used in the role of both of the systems. The

release management in Jira is carried out by setting target release as the property for the

requirements and dependency engine can then be used to check that no interdependencies are

violated.

Figure 4 also depicts the two key task, one for both stakeholder roles, for which Dependency

engine offers assistance.

● New interdependencies are extracted and existing interdependencies are checked during

the requirements engineering, specifically during specification and analysis, phase. A

model of requirements is constructed using feature model technologies.

● The validity check of release and possible repair proposals for invalid releases are carried

out during the release definition and management. For example, Dependency engine can

be used to check interdependencies such as if requirement A requires requirement B then

requirement B is suggested to be included in the same or earlier release; or if the effort of

selected requirements exceed the available resources, some requirements are proposed

to be left out.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 45 of 76

Figure 4. The context of Dependency engine

4.2 Logical view of services in Dependency engine

Dependency engine consists of four independent service as shown in Figure 5. Each service has

a REST-based interface and is relatively independent although operate in an orchestrated manner

as a part of Dependency engine.

4.2.1 Services

Nikke is the service that contains the functionality and algorithm implementations for extracting

new interdependencies from a set of existing requirements. In so doing, Nikke provides an

external interface for uploading the requirements data that is then analyzed using NLP

technologies and algorithms.

Milla is the service that initiates the functionality to construct the feature model representation of

requirements, thus allowing the analysis of existing interdependencies and does the groundwork

for release management purposes. In so doing, Milla provides an external interface for uploading

requirements that are then converted to the proper format and forwarded to other services namely

Mulperi and SpringCaaS. Milla has also ability to fetch the requirements from specific RMS.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 46 of 76

Mulperi is a service that, one hand, takes care of the functionality of constructing a feature model

representation from the requirements and, on the other hand, receives and converts queries about

interdependencies in requirement to proper format. In general terms, Mulperi operates as a

controller to SpringCaaS by converting incoming messages to proper feature model formats.

SpringCaaS (Spring boot Configurator as a Service) takes care of the required inference. It

constructs an ASP or a CSP model, and uses existing solver (Smodels, Choco) as an inference

engine to carry out required inference for the queries. For example, interdependencies are

calculated as a transitive closure and repair is proposed if the selected requirements are in

conflict.

4.2.2 Dependency engine external interfaces (APIs)

There are three external interfaces (application programming interfaces (APIs)) beyond system

boundary.

● Nikke’s external interface allows uploading the requirements for analysis. The

requirements can be further forwarded to Milla

● Milla’s external interface allows uploading requirements for constructing the feature model

representation of requirements. Respective interface exists also for fetching requirements.

● Mulperi’s external interface allows release management to make queries.

Milla’s interface can be used from Nikke or directly from RMS. In the former case, requirements

are forwarded to Milla after the analysis of new interdependencies. In the latter case, the

requirements from RMS are uploaded directly bypassing Nikke, such as in case the requirements

engineering has no time or authority to accept or reject Nikke’s analysis results, or changes are

so minor that Nikke’s analysis is not considered necessary.

Figure 5. A logical view of services in Dependency engine and interfaces beyond system boundary

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 47 of 76

4.3 Behavior of Dependency engine

We describe the behavior of Dependency engine in Figure 6 by using the concrete scenario in

which RMS and release management system are in Jira. Jira includes then a plugin that utilizes

the services of Dependency engine by orchestrating and triggering the behavior. Because such

a Jira plugin is developed in the WP6 or WP7 of OpenReq, the details of the Jira plugin are not

covered here.

There are two different sequences of Dependency engine. First, Dependency engine helps the

requirement manager in the management of requirements such as detection of similarities or

duplicates, and detection that interdependencies are inconsistent. Internally for Dependency

engine, a feature model representation of requirements is constructed. Second, Dependency

engine helps the product manager in assigning requirements to different releases, such as

ensures that the interdependencies are taken into account.

The upper sequence in Figure 6 describes the scenario of working with the requirements

manager.

1. As a precondition for the sequence, the requirement manager stores requirements in Jira.

She analyses the requirements in order to assure the quality of requirements including

defining the interdependencies.

2. The requirements manager triggers the behavior of Dependency engine using the Jira

plugin.

3. Jira as the RMS includes a Jira plugin that exports and sends the requirements including

relevant properties to Nikke. For example, the relevant properties include priority and effort

but exclude change history.

4. Nikke analyses the requirements using NLP technologies to detect new similarities or

other interdependencies.

5. Nikke responds to the Jira plugin with the found interdependencies that are new and not

explicated before in order to let requirements manager to review them.

6. The Jira plugin prompts requirements manager to accept or reject the new

interdependencies.

7. The Jira plugin updates the accepted new interdependencies to Jira.

8. The Jira plugin notifies Nikke about the accepted interdependencies that are updated to

Nikke’s data model.

9. Nikke sends the requirement to Milla. The requirements include the properties as well as

the accepted interdependencies.

10. Milla is responsible for parsing requirements information to a format understandable by

Mulperi. Milla encapsulates the appropriately formatted requirements into a message that

it sends to Mulperi. The currently primarily supported format is JSON format called

MulSON.

11. Mulperi constructs a feature model in Kumbang language from the requirements

12. Mulperi sends the resulting Kumbang model in a XML message to SprinCaas.

13. SprinCaaS generates a CSP from the feature model. At the same time, SpringCaaS also

carries out certain analyses, such as checks consistency.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 48 of 76

14. SpringCaaS returns through Mulperi and Milla whether CSP construction succeeded or

possible error.

The lower sequence in Figure 6 describes the scenario for product manager.

1. The product manager makes a decision that the requirements A and B should be in a

release and makes the assignment to find direct consequences using the Jira plugin.

2. The Jira Plugin queries about the interdependencies of the requirements A and B by

sending a message in JSON / XML to Mulperi’s “Find direct Consequences” interfaces.

3. Mulperi converts the received query to the SpringCaaS Kumbang XML-format.

4. Mulperi sends the query message to SpringCaaS.

5. SpringCaaS reads the message, calculates interdependencies as a transitive closure on

the basis of CSP constructed in the above sequence by using Choco solver for inference.

6. SpringCaaS returns interdependencies as an XML-based return message to Mulperi.

7. Mulperi returns the message to the Jira plugin that made the original query as a JSON

message.

8. The Jira plugin proposes to the release manager the results of finding direct

consequences by proposing to include the requirement C because it required by the

requirement B.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 49 of 76

Figure 6. Example behavior of Dependency engine in the context of integration with a Jira plugin

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 50 of 76

References

Achimugu, P.; Selamat, A.; Ibrahim, R. & Mahrin, M. N. A systematic literature review of software

requirements prioritization research, Information and Software Technology, 56(6),568-585, 2014

Ali, R.; Dalpiaz, F. & Giorgini, P. Reasoning with contextual requirements: Detecting inconsistency

and conflicts, Information and Software Technology, 55(1), 35-57, 2013

Ameller, D.; Farré, C.; Franch, X. & Rufian, G. A Survey on Software Release Planning Models

Product-Focused Software Process Improvement: 17th International Conference, PROFES 2016,

48-65, 2016

Anderson, A. Towards tool-supported configuration of services Helsinki University of Technology,

Department of Computer Science and Engineering (MSc thesis), 2005

Andersen, H.; Hadzic, T. & Pisinger, D. Interactive Cost Configuration Over Decision Diagrams

Journal of Artificial Intelligence Research, 37, 99-139, 2010

Asikainen, T., Männistö, T., & Soininen, T. Kumbang: A Domain Ontology for Modelling Variability
in Software Product Families. Advanced Engineering Informatics, 21(1), 23-40, 2007

Babar, M. I.; Ramzan, M. & Ghayyur, S. A. K. Challenges and future trends in software

requirements prioritization International Conference on Computer Networks and Information

Technology, 319-324 2011,

Bakker, R.; Dikker, F.; Tempelman, F. & Wogmim, P. Diagnosing and solving over-determined

constraint satisfaction problems 13th International Joint Conference on Artificial Intelligence, 276-

281, 1993

Bano, M.; Zowghi, D. & Ikram, N. Systematic reviews in requirements engineering: A tertiary study

2014 IEEE 4th International Workshop on Empirical Requirements Engineering (EmpiRE),9-16

2014

Basili R., Bosco C., Delmonte R., Moschitti A. and Simi M. Harmonization and development of

resources and tools for Italian natural language processing within the PARLI Project. Springer,

2015.

Beatty, J., Stowe, M.J., Cardenas, A., Reinhart, D., & Bartlett, J. Requirements Management

Tools Evaluation Report. Seilevel Report. Seilevel report. 2016

Benavides, D.; Segura, S. & Ruiz-Cortes, A. Automated analysis of feature models 20 years later:

A literature review Information Systems, 35, 615-636, 2010

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 51 of 76

Birk, A., Heller, G. List of Requirements Management Tools. The Making of Software,

http://makingofsoftware.com/resources/list-of-rm-tools. Accessed November 2017. 2017

Bosch, J. Design and Use of Software Architectures: Adapting and Evolving a Product-Line

Approach Addison-Wesley, New York, USA, 2000

Bouraga, S.; Jureta, I. & Faulkner S. Requirements engineering patterns for the modeling of

Online Social Networks features IEEE 4th International Workshop on Requirements Patterns

(RePa), 33-38, 2014

Breaux, T. & Antón, A. Analyzing regulatory rules for privacy and security requirements IEEE

Transaction on Software Engineering, 34(1), 5–20, 2008

Burgess, C.; Livesay, K. & Lund, K. Explorations in context space: words Sentences, Discourse,

Discourse Processes, 25(2-3), 211–257, 1998

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.; Krennwallner, T.; Leone, N.; Ricca,

F. & Schaub, T. ASP-Core-2: Input language format 2012

Caralt, J.C. & Kim, J.W. Ontology Driven Requirements Query 40th Annual Hawaii International

Conference on System Sciences (HICCS), 2007

Carlshamre, P. Release Planning in Market-Driven Software Product Development: Provoking an

Understanding Requirements Engineering, 7, 139-151, 2002

Carlshamre, P.; Sandahl, K.; Lindvall, M.; Regnell, B. & och Dag, J. N. An industrial survey of

requirements interdependencies in software product release planning Proceedings Fifth IEEE

International Symposium on Requirements Engineering, 84-91 2001

Carrillo-de-Gea, J.M.; Nicolás, J.; Alemán, J.L.F.; Toval, A.; Vizcaíno, A. & Ebert, C. Reusing

requirements in global software engineering Managing requirements knowledge, 2013

Cesar Brandão Gomes da Silva, A.; de Figueiredo Carneiro, G.; Brito e Abreu, F. & Pessoa

Monteiro, M. Frequent Releases in Open Source Software: A Systematic Review Information,

Multidisciplinary Digital Publishing Institute, 8, 109, 2017

Chen, Q.; Yao, L. & Yang, J.Short text classification based on LDA topic model International

Conference on Audio, Language and Image Processing (ICALIP), 749-753, 2016

Chung, L. & Supakkul, S. Capturing and reusing functional and non-functional requirements

knowledge: a goal-object pattern approach IEEE international conference on information reuse

and integration (IRI), 539–544, 2006

http://makingofsoftware.com/profile/gerald-heller
http://makingofsoftware.com/
http://makingofsoftware.com/

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 52 of 76

Clements, P.; Northrop, L. M.; Gacek, C.; Knauber, P. & Schmidt, K. Software Product Lines:

Practices and Patterns Successful Software Product Line Development in a Small Organization

Addison-Wesley, 2001

Cunis, R.; Günter, A.; Syska, I.; Peters, H. & Bode, H. PLAKON - an approach to domain-

independent construction 2nd International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems (IEA/AIE-89), 2, 866-874, 1989

CyLEDGE International Configurator Database Cyledge configurator database, 2015

Czarnecki, K.; Helsen, S. & Eisenecker, U. W. Formalizing Cardinality-Based Feature Models and

Their Specialization Software process: Improvement and practice, 10, 7-29, 2005

Dahlstet, Å. G. & Persson, A. (Aurum, A. & Wohlin, C. (Eds.)) Requirements Interdependencies:

State of the Art and Future Challenges Engineering and Managing Software Requirements,

Springer Berlin Heidelberg, 95-116, 2005

Dalpiaz, F., Franch, X, & Horkoff, J. iStar 2.0 Language Guide. arXiv:1605.07767

https://arxiv.org/pdf/1605.07767v3.pdf, 2016

Daneva, M. & Herrmann, A. Requirements prioritization based on benefit and cost prediction: A

method classification framework Software Engineering and Advanced Applications, 2008.

SEAA'08. 34th Euromicro Conference, 240-247, 2008

Daramola, O.; Sindre, G. & Stalhane, T. Pattern-based Security requirements specification using

ontologies and boilerplates IEEE second international workshop on requirements patterns

(RePa), 54–59, 2012

Darr, T.; Klein, M. & McGuinness, D. L. Special issue: configuration design Artificial Intelligence

for Engineering Design, Analysis and Manufacturing (AI EDAM), 12, 293-294, 1998

de Maat, E.; Winkels, R. & van Engers, T. Automated detection of reference structures in law

Conference on legal knowledge and information systems, 41–50, 2006

Dehlinger, J. & Lutz, T.R. A product-line requirements approach to safe reuse in multi-agent

systems 4th international workshop on Software engineering for large-scale multi-agent systems

(SELMAS '05), 1-7, 2005

Eriksson, M.; Börstler, J.; Borg, K. Managing requirements specifications for product lines–An

approach and industry case study Journal of Systems and Software, 82(3), 435-447, 2009

Escalona, M.J.; Urbieta, M.; Rossi, G.; Garcia-Garcia, J.A. & Robles Luna, E. Detecting Web

requirements conflicts and inconsistencies under a model-based perspective Journal of Systems

and Software, 86(12), 3024-3038, 2013

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 53 of 76

Faltings, B. & Freuder, E. C. Special Issue on configuration IEEE Intelligent Systems, 13, 32-33,

1998

Foltz, P.W.; Kintsch, W. & Landauer, T.K. The measurement of textual coherence with latent

semantic analysis Discourse Processes, 25(2-3), 285–307, 1998

Franch, X.; Quer, C.; Renault, S.; Guerlain, C.; Palomares, C. Constructing and using software

requirement patterns Managing requirements knowledge, Springer, 2013

Felfernig, A.; Stumptner, M. & Tiihonen, J. Special issue: configuration Artificial Intelligence for

Engineering Design, Analysis and Manufacturing (AI EDAM), 25, 113-114, 2011

Felfernig, A.; Friedrich, G. E. & Jannach, D. UML as Domain Specific Language for the

Construction of Knowledge-based Configuration Systems International Journal of Software

Engineering and Knowledge Engineering, 10, 449-469, 2000

Felfernig, A.; Friedrich, G. & Jannach, D. Conceptual modeling for configuration of mass-

customizable products Artificial Intelligence in Engineering, 15, 165-176, 2001

Felfernig, A.; Friedrich, G.; Schubert, M.; Mandl, M.; Mairitsch, M. & Teppan, E. Plausible Repairs

for Inconsistent Requirements Proceedings of the 21st International Jont Conference on Artificial

Intelligence, 791-796, 2009

Felfernig, A.; Schubert, M. & Zehentner, C. An Efficient Diagnosis Algorithm for Inconsistent

Constraint Sets Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI

EDAM), 26, 53-62, 2012

Gabrilovich, E. & Markovitch, S. Computing Semantic Relatedness Using Wikipedia-based

Explicit Semantic Analysis 20th International Joint Conference on Artificial Intelligence, pp 1606–

1611, 2007

Galster, M.; Weyns, D.; Tofan, D.; Michalik, B. & Avgeriou, P. Variability in Software Systems ---

A Systematic Literature Review IEEE Transactions on Software Engineering, 40, 282-306, 2014

Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.; Schaub, T. & Schneider, M. Potassco:

The Potsdam Answer Set Solving Collection AI Communications, 24, 107-124, 2011

Goldin, L.; Berry, D.M. Reuse Of requirements reduced time to market at one industrial shop: a

case study Requir Eng, 20(1), 2013

Gotel, O. C. Z. & Finkelstein, C. W. An analysis of the requirements traceability problem

Proceedings of IEEE International Conference on Requirements Engineering, 94-101, 1994

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 54 of 76

Hamdaqa, M. & Hamou-Lhadj, A. An approach based on citation analysis to support effective

handling of regulatory compliance Fut Gen Comput Syst, 27(4), 395–410, 2009

Hauksdottir, D.; Vermehren, A. & Savolainen, J. Requirements reuse at Danfoss 20th IEEE

international conference on requirements engineering (RE), 309–314, 2012

Hauksdottir, D.; Ritsing, B.; Andersen, J.C: & Mortensen, N.H. Establishing Reusable

Requirements Derived from Laws and Regulations for Medical Device Development IEEE 24th

International Requirements Engineering Conference Workshops (REW), 220-228, 2016

Heinrich, M. & Jüngst, E. W. A resource-based paradigm for the configuring of technical systems

from modular components Seventh IEEE Conference on Artificial Intelligence Applications (CAIA-

91), 257-264, 1991

Herrmann, A. & Daneva, M. Requirements Prioritization Based on Benefit and Cost Prediction:

An Agenda for Future Research 16th IEEE International Requirements Engineering Conference,

125-134, 2008

Heumesser, N. & Houdek, F. Towards systematic recycling of systems requirements 25th

International Conference on Software Engineering, 512-519, 2003

Hippel EV, Krogh GV. Open source software and the “private-collective” innovation model: Issues

for organization science. Organization science, 14(2), 209-23 2003

Hiisilä, H.; Kauppinen, M. & Kujala S. Challenges of the Customer Organization’s Requirements

Engineering Process in the Outsourced Environment – A Case Study Requirements Engineering:

Foundation for Software Quality, Lecture Notes in Computer Science, vol 9013, 2015

Hofmann, T. Probabilistic latent semantic indexing International ACM SIGIR Conference (SIGIR

’99), 50–57, 1999

Hotomski, S.; Charrada, E.B. & Glinz, M. An Exploratory Study on Handling Requirements and

Acceptance Test Documentation in Industry IEEE 24th International Requirements Engineering

Conference (RE), 116-125, 2016

Irshad, M.; Petersen, K. & Poulding, S. A systematic literature review of software requirements

reuse approaches Information and Software Technology, 93, 223-245, 2017

Issa, A.A. & Al-Ali, A. Use Case Patterns Driven Requirements Engineering Second International

Conference on Computer Research and Development, 307-313, 2010

Issa, A.A. &. Al-Ali, A.I. Automated requirements engineering: Use case patterns-driven approach

IET Software, 5(3), 287-303, 2011

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 55 of 76

Jain, P.; Verma, K.; Kass, A. & Vasquez, R.G. Automated review of natural language

requirements documents: generating useful warnings with user-extensible glossaries driving a

simple state machine 2nd India software engineering conference (ISEC '09), 37-46, 2009

Jensen, J.; Tondel, I.A.; Jaatun, M.G.; Meland, P.H. & Andresen, H. Reusable security

requirements for healthcare applications International conference on availability, reliability and

security (ARES), 380–385, 2009

Junker, U. QuickXPlain: Preferred Explanations and Relaxations for Over-Constrained Problems

19th National Conference on Artificial Intelligence (AAAI'04), 162-172, 2004

Kang, K.; Cohen, S.; Hess, J.; Novak, W. & Peterson, A. Feature-Oriented Domain Analysis

(FODA) Feasibility Study Software Engineering Institute, Software Engineering Institute, 1990

Kang, K.; Kim, S.; Lee, J.; Kim, K.; Shin, E. & Huh, M. FORM: A feature-oriented reuse method

with domain-specific reference architectures Annals of Software Engineering, 5, 143-168, 1998

Karlsson, J.; Olsson, S. & Ryan, K. Improved practical support for large-scale requirements

prioritising Requirements Engineering, 2, 51-60, 1997

Kitchenham, B.; & Charters, S. Guidelines for Performing Systematic Literature Reviews in

Software Engineering EBSE Technical Report EBSE-2007-01, 2007

Konrad, S. & Cheng, B.H. Requirements patterns for embedded systems IEEE Joint International

Conference on Requirements Engineering (RE), 127–136, 2002

Konrad, S. & Cheng, B.H. Real-time specification patterns 27th International Conference on

Software engineering (ICSE), 372–38, 2005

Lam, W.; McDermid, J.A. & Vickers, A.J. Ten steps towards systematic requirements reuse

Requir Eng, 2(2), 1997a

Lam, W. Achieving requirements reuse: A domain-specific approach from avionics Journal of

Systems and Software, 38(3), 197-209, 1997b

LeClair, A., Bittner, K., Mines, C., Turrisi, T. TechRadar™: Modern Software Requirements

Management Tools, Q2. Forrester report. 2016

Lee, M.C.; Chang, J.W. & Hsieh, T.C A Grammar-Based Semantic Similarity Algorithm for Natural

Language Sentences The Scientific World Journal, 2014

Lehtola, L.; Kauppinen, M. & Kujala, S. Requirements Prioritization Challenges in Practice

Product Focused Software Process Improvement: 5th International Conference, 497-508, 2004

https://www.forrester.com/Amanda-LeClair
https://www.forrester.com/Christopher-Mines

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 56 of 76

Lin, J. & Gunopulos, D. Dimensionality reduction by random projection and latent semantic

indexing 3rd SIAM International Conference on Data Mining, 2003

Mahmoud, A. & Niu, N. An experimental investigation of reusable requirements retrieval IEEE

International Conference on Information Reuse & Integration, 330-335, 2010

Mannion, M.; Keepence, B.; Kaindl, H. & Wheadon, J. Reusing single system requirements from

application family requirements International Conference on Software Engineering, 453-462,

1999

Mavin, A.; Wilksinson, P.; Gregory, S. & Uusitalo, E. Listens Learned (8 Lessons Learned

Applying EARS) 2016 IEEE 24th International Requirements Engineering Conference, 276-282,

2016

Mavin, A.; Wilkinson, P.; Teufl, S.; Femmer, H.; Eckhardt, J. & Mund, J. Does Goal-Oriented

Requirements Engineering Achieve Its Goal? 2017 IEEE 25th International Requirements

Engineering Conference, 174-183, 2017

Mazo, R. & Feltus, C. Framework for Engineering Complex Security Requirements Patterns 26th

International Conference on IT Convergence and Security (ICITCS), 1-5, 2016

McDermott, J. R1: A Rule-based configurer of computer systems Artificial Intelligence, 19, 39-88,

1982

Méndez, D. & Wagner, S. Naming the pain in requirements engineering: A design for a global

family of surveys and first results from Germany Information and Software Technology, Volume

57, 616-643, 2015

Méndez Fernández, D.M., Wagner, S., Kalinowski M., et al., Naming the pain in requirements

engineering. Empirical Software Engineering, 22(5), 2298–2338, 2017

Misra, J. Terminological inconsistency analysis of natural language requirements Inf. Softw.

Technol., 74, 183-193, 2016

Mittal, S. & Frayman, F. Towards a generic model of configuration tasks 11th International Joint

Conference on Artificial Intelligence (IJCAI-89), 2, 1395-1401, 1989

Murphy, T.E., Revang, M., Wurster, L.F. . Market Guide for Software Requirements Definition and

Management Solutions. Gartner report. ID: G00276075. 2016

Myklebust, T.; Lyngby, N.; Bains, R. & Hanssen, G.K. CoVeR maintenance and maintainability

requirements by using tools Reliability and Maintainability Symposium, 1-6, 2014

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 57 of 76

Myllärniemi, V.; Ylikangas, M.; Raatikainen, M.; Pääkkö, J.; Männistö, T. & Aaltonen, T.

Configurator-as-a-service: tool support for deriving software architectures at runtime Working

IEEE / IFIP Conference on Software Architecture, Companion Volume, 151-158, 2012

Najmann, O. & Stein, B. A Theoretical Framework for Configuration Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems: 5th International Conference (IEA/AIE-

92), Springer, LNCS 604, 441-450, 1992

Natt och Dag, J.; Regnell, B.; Carlshamre, P.; Andersson, M. & Karlsson, J. A Feasibility Study of

Automated Natural Language Requirements Analysis in Market-Driven Development

Requirements Eng, 7(20), 2002

OMG - Object Management Group Requirements Interchange Format (ReqIF) Version 1.2

(TechReport) Object Management Group, Inc., 2016,

Osterwalder, A. The Business Model Ontology - A Proposition In A Design Science Approach.

PhD thesis, University of Lausanne, (2004).

Pacheco, C.; Garcia, I.; Calvo-Manzano, J.A. & Arcilla, M. Reusing functional software

requirements in small-sized software enterprises: a model oriented to the catalog of requirements

Requirements Engineering, 22(2), 275-287, 2017

Palmirani, M.; Brighi, R. & Massin,i M. Automated extraction of normative references in legal texts

9th international conference on artificial intelligence and law (ICAIL’03), 105–106, 2003

Palomares, C.; Quer, C. & Franch, X. Requirements reuse and requirement patterns: a state of

the practice survey Empir Software Eng, 22(6), 2719-2762, 2017

Panis, M.C. Reuse of Architecturally Derived Standards Requirements IEEE International

Requirements Engineering Conference (RE), 296–304, 2015

Pedersen, T. & Kulkarni, A. Identifying similar words and contexts in natural language with

SenseClusters 20th National Conference on Artificial intelligence (AAAI'05), 1694-1695, 2005

Pergher, M. & Rossi, B. Requirements prioritization in software engineering: A systematic

mapping study 2013 3rd International Workshop on Empirical Requirements Engineering

(EmpiRE), 40-44, 2013

Perrouin, G.; Brottier, E.; Baudry, B. & Le Traon Y. Composing Models for Detecting

Inconsistencies: A Requirements Engineering Perspective Requirements Engineering:

Foundation for Software Quality (REFSQ), 2009

Petersen, K.; Vakkalanka, S. & Kuzniarz, L. Guidelines for conducting systematic mapping studies

in software engineering: An update Information and Software Technology, 64, 2015

http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_BM_Ontology.pdf

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 58 of 76

Pitangueira, A.; Maciel, R. & Barros, M. Software requirements selection and prioritization using

SBSE approaches: A systematic review and mapping of the literature Journal of Systems and

Software, 103, 267-280, 2015

Pohl, K. Process-centered requirements engineering John Wiley & Sons, Inc., 1996

Pohl, K.; Böckle, G. & van der Linden, F. Software Product Line Engineering: Foundations,

Principles, and Techniques Springer-Verlag Berlin Heidelberg, Germany, 2005

Post, A.; Menzel, I. & Podelski, A. Applying restricted English grammar on automotive

requirements: does it work? A case study 17th International Working Conference on

Requirements Engineering: Foundation for Software Quality (REFSQ), 166–180, 2011

Prifti, T.; Banerjee, P. & Cukic, B. Detecting bug duplicate reports through local references 7th

International Conference on Predictive Models in Software Engineering, 1-9, 2011

Raatikainen, M.; Männistö, T.; Tommila, T. & Valkonen, J."Challenges of requirements

engineering — A case study in nuclear energy domain IEEE 19th International Requirements

Engineering Conference, 253-258, 2011

Raatikainen, M.; Tiihonen, J.; Männistö, T. Software Product Lines and Variability Modeling:

A Tertiary Study, Journal of Systems and Software, (submitted), 2017

Raymond, Eric. "The cathedral and the bazaar." Philosophy & Technology 12(3), 1999

Rehbein I., Ruppenhofer J., Sporleder C., and Pinkal M. Adding nominal spice to SALSA - frame-

semantic annotation of German nouns and verbs. Conference on Natural Language Processing

(KONVENS), 2012

Renault, S.; Méndez, O.; Franch, X. & Quer, C. A Pattern-based Method for building

Requirements Documents in Call-for-tender Processes Int J Comput Sci Appl, 6(5), 175–202,

2009

Riegel, N. & Doerr, J. A systematic literature review of requirements prioritization criteria

International Working Conference on Requirements Engineering: Foundation for Software

Quality, 300-317 , 2015

Rine, D.C. & Nada, N. An empirical study of a software reuse reference model. Information and

Software Technology, 42(1), 2000

Runeson, P.; Alexandersson, M. & Nyholm, O. Detection of Duplicate Defect Reports Using

Natural Language Processing 29th International conference on Software Engineering (ICSE '07),

pp.499-510, 2007

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 59 of 76

Sabin, D. & Weigel, R. Product configuration frameworks — a survey IEEE Intelligent Systems,

13, 42-49, 1998

Sannier, N.; Adedjouma, M.; Sabetzadeh, M. & Briand, L.C. An automated framework for

detection and resolution of cross references in legal texts Requirements Engineering, 22(2), 215-

237, 2017

Schmidt, D; Fayad, M. & Johnson, R. Software Patterns Communications of The ACM, 1996

Schobbens, P.-Y.; Heymans, P.; Trigaux, J.-C. & Bontemps, Y. Generic semantics of feature

diagrams Computer Networks, 51, 456-479, 2007

Sengar, P. MarketScope for Configure, Price and Quote Application Suites Gartner, Inc., 2013

Sikora E.; Tenbergen B. & Pohl K. Requirements Engineering for Embedded Systems: An

Investigation of Industry Needs Requirements Engineering: Foundation for Software Quality

(REFSQ), Lecture Notes in Computer Science, vol 6606, 2011

Silva, A.; Silva, A.; Araújo, T.; Willamy, R.; Ramos, F.; Costa, A.; Perkusich, M. & Dilorenzo, E.

Ordering the product backlog in agile software development projects: A systematic literature

review Proceedings of the International Conference on Software Engineering and Knowledge

Engineering, 74-80, 2017

Simons, P.; Niemelä, I. & Soininen, T. Extending and implementing the stable model semantics

Artificial Intelligence, 138, 181-234, 2002

Sinz, C.; Haag, A.; Narodytska, N.; Walsh, T.; Gelle, E.; Sabin, M.; Junker, U.; O'Sullivan, B.;

Rabiser, R.; Dhungana, D.; Grunbacher, P.; Lehner, K.; Federspiel, C. & Naus, D. Configuration

IEEE Intelligent Systems, IEEE, 22, 78-90, 2007

Sher, F.; Jawawi, D. N. A.; Mohamad, R. & Babar, M. I. Requirements prioritization techniques

and different aspects for prioritization a systematic literature review protocol 2014 8th. Malaysian

Software Engineering Conference (MySEC), 31-36, 2014

Soininen, T. & Stumptner, M. Special issue: configuration Artificial Intelligence for Engineering

Design, Analysis and Manufacturing (AI EDAM), 17, 1-2, 2003

Soloway, E.; Bachant, J. & Jensen, K. Assessing the Maintainability of XCON-in-RIME: Coping

with the Problem of very large Rule-bases Proceedings of the Sixth National Conference on

Artificial Intelligence (AAAI-87), 824-829, 1987

Sommerville, I. Software engineering 2010

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 60 of 76

Souag, A.; Mazo, R.; Salinesi, C. & Comyn-Wattiau, I. Reusable knowledge in security

requirements engineering: a systematic mapping study Requir Eng, 2015

Stumptner, M. An Overview of Knowledge-based Configuration AI Communications, 10, 111-125,

1997

Sun, C.; Lo, D.; Khoo, S.C. & Jiang, J. Towards more accurate retrieval of duplicate bug reports

26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), 253-

262, 2011

Svahnberg, M.; van Gurp, J. & Bosch, J. A taxonomy of variability realization techniques Software

--- Practice and Experience, 35, 705-754, 2005

Svahnberg, M.; Gorschek, T.; Feldt, R.; Torkar, R.; Saleem, S. B. & Shafique, M. U. A systematic

review on strategic release planning models Information and Software Technology, 52, 237 - 248,

2010

Thakurta, R. Understanding requirement prioritization artifacts: a systematic mapping study

Requirements Engineering, 1-36, 2016

Tiihonen, J. Support for configuration of physical products and services. Aalto University

publication series Doctoral dissertations, 153/2014, 2014

Tiihonen, J.; Raatikainen, M.; Myllärniemi, V. & Männistö, T. Carrying Ideas from Knowledge-

Based Configuration to Software Product Lines Software Reuse: Bridging with Social-Awareness:

15th International Conference, ICSR 2016, 55-62, 2016

Tiihonen, J. & Soininen, T. Product configurators - information system support for configurable

products Laboratory of Information Processing Science Technical Report series, Helsinki

University of Technology, Helsinki University of Technology, Helsinki University of Technology,

TKO-B 137, 1997

Tiihonen, J. & Felfernig, A. An introduction to personalization and mass customization Journal of

Intelligent Information Systems, 49, 1-7, 2017

Tiihonen, J.; Felfernig, A.; Zanker, M. & Männistö, T. Special issue: advances in configuration

systems: editorial International Journal of Mass Customisation, 3, 311-315, 2010

Toval, A.; Nicolás, J.; Moros, B. & García, F. Requirements reuse for improving information

systems security: a practitioner’s approach, Requirements Engineering, 6(4), 2002

Tran, T.O.; Xuan, B.N.; Le, N.M. & Akira, S. Automated reference resolution in legal texts Artif

Intell Law, 22(1), 29–60, 2014

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 61 of 76

Verma, K. & Kass, A. Requirements Analysis Tool: A Tool for Automatically Analyzing Software

Requirements Documents The Semantic Web - ISWC 2008, Lecture Notes in Computer Science,

vol 5318, 2008

Vidal, E.; Thollard, F.; de la Higuera, C.; Casacuberta, F. & Carrasco, R.C. Probabilistic finite-

state machines part I. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7),

1013–1025, 2005

Vogelsang, A. & Fuhrmann, S. Why feature dependencies challenge the requirements

engineering of automotive systems: An empirical study 2013 21st IEEE International

Requirements Engineering Conference (RE), 267-272, 2013

Wahono, R.S. & Cheng, J. Extensible requirements patterns of web application for efficient web

application development First International Symposium on Cyber Worlds, 412-418, 2002

Wang, X.; Zhang, L.; Xie, T.; Anvik, J. & Sun, J. An approach to detecting duplicate bug reports

using natural language and execution information ACM/IEEE 30th International Conference on

Software Engineering, 461-470, 2008

Wang, M. & Cer, D. Stanford: probabilistic edit distance metrics for STS Sixth International

Workshop on Semantic Evaluation (SemEval '12), 648-654, 2012

Weiss, D. M. & Lai, C. T. R. Software Product-Line Engineering: A Family-Based Software

Development Process Addison-Wesley Longman Publishing Co., Inc., 1999

Withall, S. Software requirement patterns Microsoft Press, 2007

Zhang, H.; Li, J.; Zhu, L.; Jeffery, R.; Liu, Y.; Wang, Q. & Li, M. Investigating dependencies in

software requirements for change propagation analysis Information and Software Technology,

56, 40-53, 2014

Zhu, X. & Jin, Z. Inconsistency measurement of software requirements specifications: an

ontology-based approach 10th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS), 402-410, 2005

Zuccato, A.; Daniels, N. & Jampathom, C. Service Security Requirement Profiles for Telecom:

How Software Engineers May Tackle Security Sixth International Conference on Availability,

Reliability and Security, 521-526, 2011

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 62 of 76

Appendix

Appendix 1: Full details of interdependency

taxonomies

Pohl taxonomy

Type Meaning

Condition type

Constraint Used to relate a constraint to a particular object.

Precondition Conditions that must be fulfilled to enable implementation of the
requirement.

Content type

Similar Similar objects

Compares Links to a result of a comparison

Contradicts Inconsistency between requirements

Conflicts Negative influence to another requirement

Documents type

Example_for Example (real-world scenes or scenarios)

Test_case_for Relate test case that validates requirement

Purpose E.g. informal text

Background More details

Comment Arbitrary information

Evolutionary type

Replaces Requirement has been replaced with another

Satisfies Satisfying target results in satisfying also source

Based_on influences , e.g., causes creation

Formalizes Target formalizes source. Specialization of based on.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 63 of 76

Elaborates A more comprehensive description gained later in the development
process

Abstraction

Generalization Target is generalization

Refines Target object is defined in more detail by another requirement

Carlshamre taxonomy

Type Meaning

R1 AND R2 R1 requires R2 to function, and R2 requires R1 to function.

R1 REQUIRES R2 R1 requires R2 to function but not vice versa.

R1 TEMPORAL R2 Either R1 has to be implemented before R2 or vice versa.

R1 CVALUE R2 R1 affects the value of R2 for a customer. Value can be positive or
negative.

R1 ICOST R2 R1 affects the cost of implementing R2. Value can be positive or
negative.

R1 OR R2 Only one of {R1,R2} needs to be implemented

Dahlstedt taxonomy

Type Meaning

Structural types

Refined_to Hierarchical structure for more specific requirements that
provides further explanations, details or clarification.

Synonyms: Elaborated, derived from, divide into parts,
formalizes, (generalization).

Practically optional part (cf. requires).

Changes_to New version replaces the old one.

Similar_to Similar to or overlapping with one or more other

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 64 of 76

requirements.

Similarly expressed; similar underlying idea what system
should do; or similar solutions from which one has to be
selected.

That is, either similarity in requirements or potential
solutions.

Constraining types

Requires One requirement depends on the fulfillment of another
requirement; if one requirement is to be included into the
system, it requires another requirement be included; one
requirement cannot work without another; or temporal
interdependency when one needs to be implemented before
another.

Can be used for hierarchies stronger than refined_to
(mandatory part).

Also weaker forms possible: support or enhance; positive
effect.

Conflicts_with Cannot exists at the same time; or increasing the
satisfaction of one requirement decreases the satisfaction of
another requirement.

Thus, impossible to implement both requirements or
negative effect.

Cost/value types

Increases/Decreases_cost_of If one requirement is chosen for implementation, then the
costs of implementing another requirement increases or
decreases.

Increases/Decreases_value_of If one requirement is chosen for implementation, then the
value of implementing another requirement increases or
decreases
Negative, e.g., by making functionality more complex.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 65 of 76

Zhang taxonomy

Interdependency Clas
s1

Description In other models

Constrain B,I One requirement is a constraint of another
requirement.

This kind of interdependency can
represent crosscutting relationship among
requirements

Precede B If function A precedes function B, A is a
precondition of B.

Precondition, require

Be_similar_to I If two requirements share similar data
information, these two requirements are
similar to each other.

If two requirements complete similar tasks,
these two requirements are similar to each
other.

Note: symmetric

Similar, Similar_to

Refine S One requirement is refined by more
specific requirements.

Refines, Refines_to

Be_exception_ of B,I One requirement describes the
exceptional event of another requirement.

(new)

Conflict I Implementation of one requirement
negatively impacts another requirement

Conflicts, Conflicts_with

Evolve_into E If one requirement B is a new version of
another requirement A, then A evolves
into B.

Combine, Replaces,
Satisfies, Based_on,
Formalises, Elaborates,
Changes_to

Increase/

Decrease_cost_of

C The implementation of one requirement
causes the increase/decrease of the
implementation cost of another
requirement.

Increase/

Decrease_value_of

V The implementation of one requirement
causes the increase/decrease of the value
to the customer of another requirement.

1 Business (B), implementation (I), structure (S), evolution (E), value (V), cost (C).

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 66 of 76

Appendix 2: Full details of RMS comparison

 Caliber DOORS Helix RM
Modern

Requirements4TFS

Copy and
Paste

The requirement
or the
requirement and
its child
requirements.

The requirement or
the requirement and
its properties, and
any (or all)
interdependencies
are copied.

The requirement or
the requirement and
its properties, and
interdependencies
can be copied.

Although it seems
possible it has been
difficult to use this
functionality.

Mapping of
Requirements

Just
synchronization
of the
requirement
description.

The requirement
description of the
mapped
requirement
changes without
any notice nor
notification.

Mapped
requirements
visualization to
see mapping
links.

It seems possible by
the documentation
but it cannot be
tested. It seems
difficult to apply.

No No

Use of
Requirement
Templates

No Requirement
templates are
allowed to be
created, which
correspond to
specific
requirements that
can be reused in
different situations.

It has not been
possible to test if
they can be used in
different projects.

No It is possible to apply
reusable requirements
that can be seen as
requirement templates.
They are associated with
queries to be used during
requirements elicitation
and can be imported and
exported from a template
(see Requirement
Libraries below).

Use of Project
Template

No Project templates
can be used to
establish a starting
point for artifact
types, property
types,
interdependency
types, and folder
structure. It is
possible to create
project templates.

Yes The tool provides three
project templates.

It has not been possible
to check if it is possible
to create new project
templates.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 67 of 76

Use of
Requirement
Libraries

No. No. No. A library of questions
(named FAQ) that help
requirements engineer to
elicit requirements.
These questions are
organized by functional
and non-functional
characteristics of
software.

FAQs can be adapted
and saved as a
questions template for
new projects. Reusable
requirements can be
defined as answers to
the questions in the
library.

 Jama Jira Polarion TopTeam

Copy and
Paste

A requirement. A requirement. The requirement
and its
interdependencies..

Yes, although we do not
know the part of the
requirement it clones
since the demo version,
that we could access, did
not have the full
functionality.

Mapping of
Requirements

Mapping of
specific
requirements
allowed and it can
be chosen, what
is included.

Possible to define
rules to state
which parts of
requirements
must be mapped
and when to
apply the
synchronization
of mapped
requirements
when base
requirements
change.

A copied cloned
requirement can be
mapped to its
original counterpart.
Practically, this is an
interdependency
link. Changes to
either requirement
do not propagate,
but they exist
separately.

It is possible to
define derived
requirements.
These requirements
cannot be updated
automatically. When
original requirement
is updated, the
change is marked.
The user can
synchronize both
requirements.

No

Use of
Requirement
Templates

No No No No

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 68 of 76

Use of Project
Template

A project can be
configured to act
as a template so
that it can be
reused and
synchronized.
This can be done
in Jama through
the duplicate
project option that
allows
synchronization.

A Jira project is a
collection of
requirements
adhering to
requirements types
(issues, user stories,
bugs, tasks) that
share notification
settings, a common
workflow and issue
field configuration
scheme. A project is
distinguished in
requirements as a
prefix in the
requirement’s
IDname (e.g.
“QTBUG-”.

Yes When a project is
created from an existing
project Template, the

project can then be used
as-is or can be
customized further to suit
specific needs.

It has not been possible
to check if it is possible
to create new project
templates.

Use of
Requirement

Libraries

It can be done
through the use
of containers of
reusable
requirements or
through the
duplication of
projects that can
be considered
reusable
requirement
libraries.
However, the
concept of library
is not managed
by the tool.

No. No. No.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 69 of 76

 Caliber DOORS Helix RM
Modern

Requirements4TFS

Term used Trace Link Link Link

Interdependencies
Extraction

No No No No

Interdependencies
definition

-Parent / Child
-Traces From
/To

It is not
possible to
add trace
types

-Constraints
-Extracted
-Link To
-References
-Satisfies

It is possible to add
link types

-Business/
Functional
-Business/Non
Functional -
Functional/Non-
Technical
-Related To

It is possible to add
link types

-Affects /Affected By
-Duplicate of
-Parent/Child
-
References/Reference
d By
-Related
-
Successor/Predecess
or

It was not possible to
know if new link types
can be defined.

Interdependency
types semantics

definition

No Yes, visible in the
link types catalogue.

It is possible to
define link
constraints that have
to be fulfilled when
an interdependency
is defined

Link validity to check
the compliance of
the link constraints

Yes, visible when a
link type is selected
in creating a link.

No control on the
items for which a
type of the link is
specified

No

Interdependencies
traceability

Traceability
matrix

Traceability
diagram

Links explorer

Traceability matrix
with multiple filters

Impact analysis

Traceability matrix
with multiple filters

Tagging of suspect
interdependencies

In case of
changes in a
requirement,
the trace
where it is
involved
automatically
become
suspect.

Suspect Links. It is
configurable whether
changes make the
links tagged as
suspect links.

Link validity
analyses the
interdependencies
when there are
multiple
interdependencies
among
requirements, and
different levels of
links.

In a case of changes
in a requirement, the
user has to explicitly
tag if a link that is
involved has become
suspect.

As far as we know, the
tool does not give the
functionality of tagging
links as suspect.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 70 of 76

 Jama Jira Polarion TopTeam

Term Relationship Link Link Link

Interdependencies
Extraction

No No No No

Interdependencies
definition

-Related to
-Depends on
-Derived from

It is possible to
create new
relationship types.

-Clones / Cloned
by
-Blocks / Is
blocked by
-Requires/Is
required by
-Causes / Is
caused by
-Relates to

-Relates to/is related
to
-Derived from/derived
by
-
Duplicates/duplicated
by
-Has parent/is parent
of

It’s not possible to
add link types.

-Trace In/Traces
From
-Used In/Uses
 -Impacts/Dependent

It is possible to
create new link
types.

Interdependency
types semantics

definition

No. No. No. It has not been
possible to find a
definition for the
predefined link types,
although it is
possible to introduce
a description when a
new link types
created.

It is possible to
define traceability
rules to define
constraints about the
types of
requirements for
which an
interdependency
type can be defined.

Interdependencies
traceability

Trace Matrix

Trace View

There is an
additional plug-in
(TraceabilityX) for
this.

Treeview (parent-
child relationships).

Traceability matrix.

Traceability Tab

Trace Explorer

Trace Diagram

Traceability Network
Diagram

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 71 of 76

Tagging suspect
interdependencies

When changes
occur in one
requirement, the
interdependencies
where it is
involved are
automatically
tagged as
suspect.

The user can
configure an
email notification
for “update” of an
issue which
should cover an
interdependency
change to that
requirement also.

If the property is
modified, the suspect
property will be
applied automatically
to child work Item
links, if the parent
Work Item is
modified.

Interdependencies,
in which one of the
involved
requirements
changes, can
automatically be
made suspect. It is
necessary to turn on
the automatic
suspect behavior
option.

There are
inconsistencies in
documentation and it
is not clear if
changes can tag
suspect links
recursively or not. It
could not be tested

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 72 of 76

 Caliber DOORS Helix RM
Modern

Requirements4TFS

Glossary and

natural language

analysis support

Glossaries for

individual projects.

Highlight in text of

ambiguous terms,

and other words in

the glossary.

Glossaries for

individual projects.

It is possible to

create

interdependencies

of requirement

parts with glossary

terms

Spell check

dictionary

extendible with

new words

No

Recommendation

of Requirements

No No No No

Search

Filtering in a grid

view of

requirements.

Possibility to save

the search, and

save the filter once

used.

Filter requirements

in a view.

Find/Replace.

Possible to add

tags to

requirements to

facilitate search

and classification

Grid

visualization

and filtering.

Filter requirements in a

view that contain certain

terms.

Possible to define and

save queries that are

filters of requirements

that have specific values

for their properties.

Queries may be global to

all users of a project or

personal. Each query

may have different

properties for the

included requirements.

Possible to add tags to

requirements to facilitate

search and classification

Links to other

Requirements in

Requirement

properties

No Yes No No

Dashboards

No Project and team

events and

information

Requirement view

Recent activity

Configurable

Work left, work

done in a stage

of a project

Metrics of the

project

Requirements

assigned to the

user

Recent activity

Configurable

Charts about

requirements, number of

recent changes, results

from a query, work

assigned to the user, etc.

Configurable

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 73 of 76

Customization

An API is provided

to create add-ons

using either Java or

.NET.

It is possible to add

a traceability add-in

to provide

traceability to an

external tool.

Extensions can be

developed by using

a combination of

JavaScript, HTML,

and CSS files. The

extensions access

data by using an

API.

Developers can

currently use

the REST API

to retrieve

information

about artifacts

managed by

the tool.

No documentation of the

existence of an SDK has

been found.

Integration

Provision of

traceability from

requirements to HP

Quality Center,

among others by

means of a

traceability add-in.

Supports a wide

variety of

integrations with

other IBM® and

third-party

products.

Open Services for

Lifecycle

Collaboration

(OSLC) provides

artifact creation,

linking, and data

sharing across

applications.

Integration with

Jira, MS Excel,

MS Outlook,

QA Wizard Pro

Integration with other

products of the same

provider as Smart Office

4TFS

ReqIf Format No Yes No No

 Jama Jira Polarion TopTeam

Glossary and

natural language

analysis support

No No No. Glossaries for

individual projects

that can be imported

from other glossaries.

Glossary used to

suggest words to

include in

requirements

definition

Recommendation

of Requirements

No No No No

Search

Yes, with advanced

search filters.

Yes Yes. Necessary to

previously create a

data filter to do the

search.

Also possible a global

search by keywords

and other properties.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 74 of 76

Links to other

Requirements in

Requirement

properties

No No Yes Yes.

Dashboards

Bar or Pie charts

with results of a

filter, summary of

projects, work

assigned to the

user, recent

activity, etc.

Yes, configurable.

Yes. Configurable

and personalized

dashboards.

Yes,

configurable.

Dashboard view of

Projects that displays

status information to

Business Analysts,

Project Managers,

Team Members, etc.

Yes, configurable

Customization

Not customizable

per se, offers restful

API, allowing to

build applications

for exchanging and

manipulating

requirements data.

Versatile existing

plugins for

customizing

functionality and

user interface of the

software. Offers both

a SDK and

Java&REST APIs.

A set of plugins

are offered for

enabling

requirement

templates,

customizing

workflow and

reporting. SDK

and API

available.

No SDK and only

basic API for

exchanging

requirements data

available.

Integration

Offers an

“Integration tasktop

hub”, enabling

support for e.g.

Enterprise

Architect, Jira and

VersionOne.

Integration plug-ins

available extensively

for software

development and

project management

tools.

Software plugins

enable integration

with Jira,

Enterprise

Architect and

TeamCenter.

Manufacturer does

not offer integrations,

yet other systems

support TopTeam.

ReqIf Format No No. Yes No

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 75 of 76

Appendix 3: SRP Metamodel

This appendix contains the whole metamodel of SRPs and their organization in a catalogue, as

well as the glossary with all the concepts appearing on it.

Glossary of the SRP Metamodel

● Basic classifier. Category in the lower level of a classification schema (i.e. indexing

SRPs).

● Behavior. Constraint to which the fixed and extended parts of an SRP cluster must

conform to.

● Classification schema. Taxonomy that organizes SRPs.

● Classifier. Category in a classification schema.

● Compound classifier. Category in the middle level of a classification schema (i.e.

containing other classifiers); it is used to create a hierarchical structure of classifiers.

● Concept. Main aspect to which an SRP refers to.

● Domain. Valid values that a parameter can take when applying in a project the

requirement abstraction to which the parameter is associated.

● Element. Generalization of the atomic components of SRPs that could be involved in

relationships.

● Entity type. General aspect of an IT project restricted by an SRP.

● Extended part. Requirement abstraction of an SRP cluster that allows defining a precise

requirement, providing more detail to the fixed part of that same SRP cluster.

● Fixed part. Requirement abstraction of an SRP cluster that allows defining the minimal

requirement that always holds in the SRP cluster.

● Parameter. Variable part in a requirement abstraction that takes a specific value of its

domain during the application of that requirement abstraction in a project.

● Relationship. Connection, association, or involvement among two different elements of

SRPs.

● Requirement abstraction. Generalization of the parts of an SRP cluster, which may be a

fixed or extended part.

● Root. Category in the upper level of a classification schema.

● SRP. Pattern that, when applied in a project, produces software requirements that foster

the achievement of the goal of that pattern.

● SRP cluster. Group of requirement abstractions that allow defining requirements to

achieve the goal of that SRP using a specific solution.

D5.1 OpenReq Approach for Requirements Knowledge and Dependency Management

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 76 of 76

SRP Metamodel

