

Project co-funded by the European Commission under the
H2020 Programme.

Grant Agreement nº 732463

Project Acronym: OpenReq

Project Title:
Intelligent Recommendation Decision Technologies for

Community-Driven Requirements Engineering

Call identifier: H2020-ICT-2016-1

Instrument: RIA (Research and Innovation Action)

Topic ICT-10-16 Software Technologies

Start date of project January 1st, 2017

Duration 36 months

D5.2: Requirements Dependency Engine Version 1

Lead contractor: UH

Author(s): UH, UPC

Submission date: December 2017

Dissemination level: PU

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 2 of 39

Abstract: A brief summary of the purpose and content of the deliverable.

OpenReq is a project that aims to enhance requirements engineering activities. This document
describes the first version of the services implementing the requirements knowledge
representation and dependency management. These services are collectively referred as
Dependency engine. The architecture of Dependency engine is described here and an example
is provided in Appendix. The source code of Dependency engine is available under permissive
open source licenses, and has been initially stored into the project internal TULEAP source code
repository.

This document by the OpenReq project is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Unported License.

This document has been produced in the context of the OpenReq Project. The OpenReq project is

part of the European Community's H2020 Programme and is as such funded by the European

Commission. All information in this document is provided "as is" and no guarantee or warranty

is given that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability. For the avoidance of all doubts, the European Commission has no

liability is respect of this document, which is merely representing the authors view.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 3 of 39

TABLE OF CONTENTS

1 Introduction 5

2 OpenReq context of Dependency engine 7

3 Systems context and behavior 9

4 Key concepts of Dependency engine 10

5 Logical view of Dependency engine 11

5.1 Milla 11

5.2 Mulperi 12

5.3 SpringCaaS 13

6 Behavior of Dependency engine 15

7 Development views 17

7.1 Milla development view 17

7.2 Mulperi development view 18

7.3 SpringCaaS Development view 20

8 Dependency engine APIs 21

Appendix 1: MulSON 24

Appendix 2: Map application example 25

Use cases of MapExample 26

Requirements in textual form 27

MulSON data exchange 28

Feature diagram 32

Kumbang feature model 33

Appendix 3: Demo user interface 37

Appendix 4: Glossary 39

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 4 of 39

LIST OF FIGURES

Figure 1. The context of Dependency engine in the OpenReq project .. 7

Figure 2. The systems in the context of Dependency engine ... 9

Figure 3. Logical view of Dependency engine ...11

Figure 4. Milla can rovide integration with different RMS ...12

Figure 5. The logical view of Mulperi ...13

Figure 6. Sequence diagram of a basic scenario ...16

Figure 7. Milla development view ..17

Figure 8. Mulperi development view ..19

Figure 9. SpringCaaS development view ..20

Figure A1. Use cases of MapExample illustrating the core functionality and use26

Figure A2. Tabulated textual requirements ..27

Figure A3. A MulSON representation of MapExample ...31

Figure A4. A feature diagram of MapExample ...32

Figure A5. A generated Kumbang feature model representation of MapExample36

Figure A6. A screenshot of the demo user interface ..38

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 5 of 39

1 Introduction

OpenReq is a project that aims to enhance requirements engineering activities. The focus areas

cover activities over the entire requirements engineering life-cycle, including the areas of

requirements identification, classification and decision making support. The improvements we are

looking for can be achieved through improved processes, methods and tools.

The work package WP5 “Requirements knowledge and dependency management” of OpenReq

focuses on the phases when requirements have been elicited and even preliminarily analyzed in

order to assess their validity and improve their quality. The requirements are treated as a whole,

covering the different kinds of relations between requirements including even references that

some of the requirements are so close to each other that they can be considered similar or even

duplicates. We collectively refer any such relation between requirements as interdependency. We

use the term interdependency to emphasize that we currently focus only on requirement level

artifacts rather than more general dependencies or traceability between requirements and other

artifacts. Interdependencies need to be taken into account especially in requirements prioritization

and product management so that requirements are not considered only as isolated and singular

entities. Interdependencies also affect the management decisions, such as the order of

implementing the requirements. We specifically focus on release management in which

requirements are assigned to be implemented in certain order, within a discrete release intervals

and by a certain point of time.

This document describes the version 1.0 of the Dependency engine1 of the OpenReq project.

Dependency engine is used here to refer to the set of services implementing the requirements

knowledge representation and dependency management. The services in Dependency engine

are independent but collaborate in an orchestrated manner and shall provide microservice

RESTful interfaces to the other services of OpenReq. This document focuses on Dependency

engine architecture although it also briefly describes the detailed design decisions and general

context including the other, interconnected systems. Only the version 1.0 of Dependency engine

is covered that shall be the minimal viable product. This version is based on implementing most

features described in the grant agreement task descriptions and requirements from other work

packages by the end of August 2017.

Dependency engine operates primarily with, and in the context defined by the state-of-the-practice

large-scale requirements management systems (RMSs). An example of dedicated RMS is Doors

but issues trackers, such as Jira, are also used especially in large scale open source projects.

Such RMS document and manage the requirements of a system under development. Essentially,

a requirement in the RMS consists of: a unique ID; a phrase, figure or something to describe its

content; properties or meta-data; and interdependencies to other requirements as a special class

of properties.

1 For more general approach for and architecture of Dependency engine beyond version 1.0, see “D5.1
OpenReq Approach for Requirements Knowledge and Dependency Management”

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 6 of 39

The objective of Dependency engine is to provide an advanced means to manage

interdependencies between the requirements in the RMSs of a large-scale project. In so doing,

Dependency engine automatically constructs and manages a model of the requirements on the

basis of individual requirements that already have interdependencies expressed in their

description or properties. The term manage means taking care of the consistency and other

holistic properties of the entire model and to enable various analyses. Specifically, Dependency

engine manages the interdependencies that should be taken into account in release

management. Therefore, Dependency engine, on the one hand, interfaces with a RMS, and, on

the other hand, provides an interface for querying about the structure, such as what requirements

are interdependent on each other. However, Dependency engine is not a modeling tool, rather, it

is a model management tool. It is possible to change relationships, e.g., on the basis of analyses,

but changes are not in the core of functionality covered in Dependency engine.

The source code of the dependency engine is available under the open source licenses, and is
initially stored into the project internal TULEAP source code repository.

Some parts use EPL (Eclipse Public License) and other parts use the BSD 3-clause license.

These licenses are compliant with each other. In addition, the source code uses open source

software that is compliant with these licenses such as Choco solver under the BSD license.

Related OpenReq deliverables:

● D5.1. A more general overview of planned functionality of dependency engine beyond

version 1.0 and a more detailed description of the approach in general. Both D5.1 and

D5.2 are planned as self-describing documents, hence some similarities or even

overlapping among them in some sections.

● D1.4. A general overview of the OpenReq infrastructure beyond WP5 and a more detailed

description of infrastructure, such as Swagger.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 7 of 39

2 OpenReq context of Dependency engine

The context diagram in Figure 1 describes Dependency engine as a black box service and

represents the OpenReq project context around Dependency engine.

Figure 1. The context of Dependency engine in the OpenReq project
The solid lines depict data flow and the dashed lines depict user interaction.

Dependency engine operates in the context with other services and systems with functionality

and purpose from Dependency engine viewpoint as follows:

● Personal recommender system (WP3) assists in requirements analysis activities (such

as define, reuse, screen, understand, evaluate, quality assure), partially automating some

of the tasks. Thus, it can change the content, formulation, interdependencies and any

other properties of a requirement. It is also possible to change related requirements so

that similar or related requirements are merged or regrouped thus affecting Dependency

engine or utilizing the interdependency knowledge.

● Group decision system (WP4) is used, e.g., in release management to make decisions

about what requirements are to be implemented and in which release. Group decision

system then interacts with Dependency engine to find out interdependencies between

requirements and the properties of requirements.

● Existing RMS (Requirements management system). OpenReq project relies on existing

RMS and other tools. The notable examples of state of the practice systems as RMS are

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 8 of 39

Jira and Doors. Dependency engine then integrates with a compatible RMS so that a RMS

is the primary storage of requirements information. There can be other existing tools, such

as Eclipse through which the integration can be done. The integration is not in the scope

of Dependency engine per se, but rather in the scope of the trials of OpenReq.

● Requirements intelligence system (WP2) operates in the requirements elicitation phase

analyzing explicit feedback, such as facebook, twitter or blogs and analyzing implicit

feedback, such as usage of software though monitoring. Dependency engine does not

directly interact with Requirements intelligence but relies on the requirements stored in the

RMS.

There can also be an OpenReq database or repository that Personal recommender system

(WP3) and Requirements intelligence (WP2) use to store the requirements. The OpenReq

database has then parallel and equal functionality comparable to a RMS, i.e., the OpenReq

database has from the point of view of Dependency engine similar functionality to store and

manage requirements and their properties and metadata as RMS. Therefore, we do not

differentiate here the potential OpenReq database but presume that there is one primary storage

place referred to as a RMS. That is, a RMS refers hereafter to either a dedicated, existing RMS

or an OpenReq specific storage.

Dependency engine has no direct (human) user interaction other than for IT system administration

tasks and potentially a possibility to trigger and demonstrate functionality. There are two

stakeholder roles that indirectly interact with Dependency engine:

● A requirements engineer is responsible for eliciting, analyzing, and managing the

requirements, including the properties and interdependencies of the requirements. In

particular, the requirements engineer is responsible for the changes. This task is assisted

by Personal recommender system (WP3) and Requirements intelligence system (WP2),

and the requirements are stored in a RMS.

● A product manager makes decisions about what requirements are implemented. A

release manager is, in fact, a group of people or she interacts with a group of people.

Therefore, the actions can include, e.g., voting or other negotiations for which Group

decision engine (WP4) is developed for. Release manager also uses the existing RMS

where the requirements are stored.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 9 of 39

3 Systems context and behavior

Dependency engine operates in a context of other systems, namely a RMS and release

management system, or product management system in general as shown in Figure 2. The

systems are logically different from the point of view of Dependency engine and, therefore, treated

as two systems. In practice, Jira, for example, can take the role of the both systems.

Figure 2 also depicts the key activities for which the numbers indicate the logical order during

requirements engineering and product management.

1. Requirements are specified and stored in an existing RMS during the requirements

engineering phase.

2. Requirements are synchronized to Dependency engine automatically and a model

including interdependencies is generated in order to enable analyses.

3. Release management makes decisions about the product and releases.

a. By selecting and negotiating requirements stored in the RMS.

b. By (automatically) checking interdependencies of the selected requirements from

Dependency engine.

Consequently, Dependency engine takes care of two main tasks. First, on the basis of

requirements in RMS, Dependency engine generates a model of requirements that is a

declarative knowledge representation that allows carrying out inferences on interdependencies

utilizing existing inference techniques and tools. Second, on the basis of constructed model,

Dependency engine allows, e.g., a release management system to query and reason about

interdependencies, such as checking which other requirements are interdependent with the

selected requirements and checking if the interdependencies of the selected requirements conflict

with each other. The stakeholder roles are the same as described above.

Figure 2. The systems in the context of Dependency engine

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 10 of 39

4 Key concepts of Dependency engine

We briefly summarize the key concepts that are applied in Dependency engine below.

A requirement is considered to be an entity that we refer to be so called “roadmappable”; a

requirement is an entity that shall or shall not be realized at a certain point of time. Dependency

engine treats the content (or body text) of a requirement ignorantly, in a black-box manner. Each

requirement may have properties. First, some of the properties are about the requirement itself

such as priority, release, effort or assignee. These properties are essentially attribute-value pairs

in which the value can be, e.g., a number, enumerated value or free form text. Second, some of

the properties are about the interdependencies of a requirement to another requirement. More

specifically, a more general requirement can consist of a set of more detailed requirements that

we refer to as “part-of” hierarchy. For example, an epic can consist of user stories or a user

requirement can consist of a set of technical requirements. Alternatively, a requirement can have

other kinds of interdependencies to other requirements beyond part-of structure such as

“requires” another requirement, or “conflicts with” another requirement.

A RMS focuses on managing each individual requirement, including their properties and

interdependencies. However, the entire product or project is defined holistically by a set of

requirements as roadmappable entities with properties, and interdependencies to each other that

constitute a model. Such a model is similar to a feature model. Therefore, a corresponding feature

model is constructed automatically by generating and using a 1-to-1 mapping from requirements

to features. The rationale for constructing a feature model is that a feature model is a well-

researched approach that is provided with various kinds of analysis as well as existing analyses

and inference tooling. A feature model representation is also the basis for performing release

planning, diagnosis and repair in general.

For example, release management includes then a configuration problem in a very simple form:

For a selected set of requirements, find other requirements that need to be taken into account

because of the interdependencies. To assist in solving this configuration problem using

Dependency engine, the selected requirements in the release management are mapped to

features similarly as in the case of RMS, and the configuration problem is solved in the generated

feature model utilizing existing configuration algorithms, technologies and tools.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 11 of 39

5 Logical view of Dependency engine

Dependency engine consists of several independent software services. These services

collaborate in an orchestrated manner and provide together the functionality of Dependency

engine. The services will be described in the following sections and summarized in Figure 3 below.

The design paradigm adheres to microservices in the sense that the interfaces of the services are

listening for input messages and respond to each input message with an output message. Each

service is a Spring Boot service of its own. The exposed external interfaces follow the REST

paradigm. The messages are based on HTTP messages. A message takes a payload in a textual

format rather than, e.g., binary object. Dependency engine supports a number of input formats.

However, a JSON specification called MulSON is currently the most dependable and human

readable format as well as used during the development. Therefore, we refer to MulSON

throughout this document as an exemplar or archetypical format. For further details about

MulSON, see Appendix 1.

Figure 3. Logical view of Dependency engine
Consisting of three services, an external and existing RMS and release management.

5.1 Milla

Milla is the active orchestrator service for RMS and Dependency engine, but concerned only

about the functionality to construct a feature model representation from requirements and not

about the analyses or queries for release management (Figure 4 below). Another main role of

Milla is to operate as a placeholder for additional, auxiliary functionality in order to keep the other

services of Dependency engine, especially Mulperi, simple and not to introduce too much

functionality in them, or not to introduce too many microservices having similar functionality.

Milla can retrieve requirements from a RMS and send the retrieved requirements further to

Mulperi. Currently, an integration to Jira is implemented by accessing Jira’s Query API.

Alternatively, Milla can operate as a pipe-and-filter style service that accepts messages in different

formats, converts the messages to proper format and further forwards them to Mulperi. We have

experimented with ReqIF and MulSON but MulSON is a more dependable format. Consequently,

Milla exposes the interfaces for both directions (provided and required) outside of dependency

engine system boundary to retrieve or receive requirements. The output messages of Milla

contain requirements in MulSON that are sent to Mulperi for further processing.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 12 of 39

An example of auxiliary functionality of Milla is that it can be used for testing purposes. For

example, the current functional testing and demonstration graphical user interface is implemented

in Milla which will be replaced by OpenReq user interface in another service.

Figure 4. Milla can rovide integration with different RMS
Either by fetching or receiving requirements in different formats such as by integration with Jira’s query interface or

receiving ReqIF messages from different RMS. The requirements are formatted as MulSON and sent to Mulperi.

5.2 Mulperi

Mulperi (Figure 5) is a service taking care of the functionality for constructing a model from

requirements that explicates the knowledge about interdependencies. Therefore, Mulperi also

provides interfaces for the operations to the resulting model, such as in the case of querying about

interdependencies in release management. The model is constructed utilizing feature modeling

concepts and tools. However, the feature model is used mainly as an internal representation of

Mulperi and in the internal interaction with SpringCaaS but interfaces to Mulperi in the broader

context of Dependency engine operate on a basis of requirements in JSON messages.

The model is constructed from the requirements that Mulperi receives from a RMS through Milla.

Each requirement corresponds with a feature of a feature model, the properties of a requirement

correspond with the attributes of a feature, and relationships between requirements correspond

with relationships in the feature model. In particular, the “part-of” relationships of requirements

constitute the tree-hierarchy of a feature model. The resulting feature model is expressed in

Kumbang language and send to SpringCaaS embedded in an XML message. For further

background and details about adopted feature model technology, see D5.1.

Mulperi is not completely stateless, though. First, retrieving requirements and constructing a

model upon each request would be too time consuming and could have performance issues.

Therefore Mulperi stores the feature model representation of requirements in an internal data

structure in order that analyses can be carried out without the need to always retrieve the

requirements data from RMS. In particular, Mulperi stores the IDs of requirements as well as

generates a unique ID for the entire model for valid referencing. Second, analyses for the entire

model, such as checking requirements consistency, can be carried out as a batch process. Third,

several different product management queries and reasonings can be made to the same model

without a need to change or retrieve the model between queries.

The second main task of Mulperi is to facilitate various kinds of analyses and queries for the

requirements, e.g., by requirements manager, product manager or release manager. By so doing,

Mulperi exposes an interface for querying about the requirements such as it can be queried about

direct consequences, or completeness of a release. For example, if a requirement A requires

requirement B and requirement C is optional, selecting requirement would result in proposing to

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 13 of 39

select requirement B because it is a direct consequence. However, the selection is not complete

because requirement C cannot be deduced being included or excluded. At the technical level,

Mulperi exposes JSON-based REST interfaces through which queries using the requirements

can be made. The queries are converted to XML format and for the inference required by queries

Mulperi utilises SpringCaaS.

Consequently, logically two different interfaces are realized in one service. Mulperi exposes an

interface, on the one hand, to receive the requirements from a RMS that are then used to construct

a consistent feature model representation of requirements to explicate interdependencies. On the

other hand, Mulperi exposes an interface for querying about the requirements taking into account

interdependencies for the purposes, such as release management of OpenReq WP4. The

interfaces are realized in one service because some data, such as the model and requirement

IDs are cached locally for performance reasons. Mulperi does not change any information in the

requirements, and, therefore, there is no need to update the RMS.

Figure 5. The logical view of Mulperi
Providing two logically different interfaces and utilization of SpringCaaS in the context of Dependency engine.

5.3 SpringCaaS

SpringCaaS (Spring boot Configurator as a Service) takes care of the required inference in

Dependency engine. SpringCaaS takes as an input a feature model expressed using Kumbang

language and embedded in an XML message. SpringCaaS constructs a declarative knowledge

representation of the feature model as a Constraint Satisfaction Problem (CSP). SpringCaaS is

an improved version of CaaS2 realizing a configuration as a service paradigm. While the basic

approach has remained similar, there have been technological revisions done for SpringCaaS.

For example, SpringCaaS uses Choco as the inference engine in order to allow different kinds of

2 Varvana Myllärniemi, Mikko Ylikangas, Mikko Raatikainen, Jari Pääkkö, Tomi Männistö, and Timo

Aaltonen. 2012. Configurator-as-a-service: tool support for deriving software architectures at runtime. In
Proceedings of the WICSA/ECSA 2012 Companion Volume (WICSA/ECSA '12). pp. 151-158.
DOI=http://dx.doi.org/10.1145/2361999.2362031

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 14 of 39

analysis as well as for a more permissive license. The query interface has also been extended to

support additional use cases for release management purposes.

SpringCaaS realizes twofold phases similarly as Mulperi but operates with the concepts of

Kumbang feature model. First, SpringCaaS constructs a CSP program on the basis of a feature

model. During the construction, SpringCaaS also analyses the resulting model for consistency.

Second, SpringCaaS provides an interface for querying about the feature model such as direct

consequences, and finding a consistent configuration.

In general, SpringCaaS is hidden behind Mulperi in the case of Dependency engine, but because

each of the services are independent, SpringCaaS can also be used directly. In the case of

OpenReq, it is more convenient to use SpringCaaS through Mulperi rather than directly.

Therefore, we do not specify interfaces in more detail but presume that SpringCaaS is used

through Mulperi.

Basically, SpringCaaS supports also Answer Set Programming (ASP) using “Smodels” engine

but due to licensing issues arising from GPL, the support is currently discontinued. The current

implementation does not include Smodels, and all functionalities do not work with Smodels as the

inference engine.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 15 of 39

6 Behavior of Dependency engine

The behavior of Dependency engine is illustrated using a scenario and respective sequence

diagram below.

The scenario is loosely based on the Qt trial of OpenReq to make scenario concrete although

Dependency engine per se is a general purpose service. The necessary Jira plugins are not a

part of Dependency engine.

The scenario is:

A requirements manager specifies the requirements in Jira that is integrated with

Dependency engine using a specific Jira plugin. Release manager makes decisions on

releases by selecting the requirements ‘A’ and ‘B’ to a release in Jira. Dependency engine

advises the release manager about a requires-interdependency found from the set of

planned requirements for the release that results in a proposal to add another requirement

‘C’ to the release.

The concrete steps are shown in a sequence diagram (Figure 6) and described below. The

sequence is divided into two sequences.

The upper sequence in Figure 6 describes the scenario of a requirements engineer.

1. The requirement engineers store requirements in Jira. They analyze the requirements in

order to assure the quality of requirements including defining the interdependencies.

2. The requirements engineers inform Milla about new requirements so that the Jira plugin

sends a notification message.

3. Milla fetches all requirements of a project from Jira using Jira’s query API by a REST call

and receives the requirements in a response message as JSON payload.

4. Milla parses requirements information to an internal format understandable by Mulperi.

5. Milla encapsulates the appropriately formatted requirements into a message that it sends

to Mulperi.

6. Mulperi constructs a feature model representation in Kumbang language from the

requirements.

7. Mulperi sends the resulting Kumbang model in a XML message to SpringCaas.

8. SpringCaaS generates a CSP from the feature model. At the same time, SpringCaaS also

carries out certain analyses such as checks consistency.

The lower part of the Figure 6 describes the basic scenario for release manager making queries

about interdependencies.

1. Product manager makes a decision that the requirements A and B should be in a release

2. Jira plugin notices new release decision and makes a query for Dependency engine

Mulperi service to resolve any interdependencies as direct consequences.

3. Mulperi converts the query to Kumbang XML format understandable by SpringCaaS.

4. Mulperi send the XML-based message to SpringCaaS

5. SpringCaaS reads the message and calculates interdependencies as a transitive closure

using Choco solver.

6. SpringCaaS returns interdependencies as an XML-based return message.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 16 of 39

7. Mulperi returns the message to the Jira plugin that made the original query as a JSON

message.

8. The Jira plugin notifies the product manager about the found interdependency to the

requirement ‘C’ that suggest including it to the release.

Figure 6. Sequence diagram of a basic scenario

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 17 of 39

7 Development views
The development view of each service shows the key classes, methods and variables.

7.1 Milla development view

Milla has a controller only for model management purposes, not for querying about the model.

Models reuse existing data models and need to be generated on the basis on the specific

integration. The figure below illustrates the integration with Jira and MulSON.

Figure 7. Milla development view

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 18 of 39

7.2 Mulperi development view

Figure 8 shows the development view of Mulperi by a class diagram. There are two controllers

taking care of request on the external interfaces that then call internal services to implement the

required functionality. Models describe the data stored in Mulperi.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 19 of 39

Figure 8. Mulperi development view

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 20 of 39

7.3 SpringCaaS Development view

SpringCaaS combines the controller functionality to one class. The figure below illustrates the key

classes of SpringCaaS service.

Figure 9. SpringCaaS development view

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 21 of 39

8 Dependency engine APIs

Dependency engine has principally two primary APIs for external use:

● Milla has an interface for synchronizing the requirements in a RMS.

● Mulperi has an interface for carrying out the queries.

The full documentation of these APIs is provided in Swagger3 documentation. Respectively, other

APIs are provided with a documentation using Swagger, even if they are meant internal to

Dependency engine. Therefore, we only give a very simple example below. In fact, in the following

we actually describe the direct use of Mulperi’s API for simplicity rather than utilizing Milla. We

apply directly a MulSON model that Milla would generate from different requirements formats and

forward to Mulperi.

The example application ABCExample consists of requirements A, B and C, where A requires C.

ABC is a general root. Each requirement can have properties, but for the purpose of

demonstrating the API call we omit them here. See a more concrete example in Appendix 2. In

MulSON, the requirements model is:

[

 {

 "requirementId": "ABC",

 "name": "ABCExample",

 "subfeatures": [

 {

 "types": ["A"],

 "role": "r1",

 "cardinality": "0-1"

 },

 {

 "types": ["B"],

 "role": "r2",

 "cardinality": "0-1"

 },

 {

 "types": ["C"],

 "role": "r3",

 "cardinality": "0-1"

 }

]

 },

 {

 "requirementId": "A",

 "name": "a",

3 For description of Swagger and its use, see OpenReq deliverable “D1.4 Project standards and
infrastructure document”

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 22 of 39

 "relationships": [

 {

 "targetId": "r3",

 "type": "requires"

 }

]

 },

 {

 "requirementId": "B",

 "name": "b"

 },

 {

 "requirementId": "C",

 "name": "c"

 }

]

This model is posted to Mulperi (to simplify the call below, we do not repeat the above

MulSON/JSON payload):

curl -X POST --header 'Content-Type: application/json' --header

'Accept: text/plain' -d '

The address for posting is, e.g., in development environment

http://localhost:8091/models/mulson

The successful response code of the HTTP is 201 and contains the ID of the model, in this case

ID_1539060640.

When selecting the requirement A to a release, interdependencies can be be checked. This is

done by posting the selection of A to Mulperi and asking consequences:

curl -X POST --header 'Content-Type: application/json' --header

'Accept: text/plain' -d '[{"type": "A"}]'

'http://localhost:8091/models/ID_1539060640/configurations/consequence

s'

Again, the payload is in JSON and the URL contains the model ID.

The successful HTTP response code is 200 and contains in its body the required requirements:

Consequences found successfully.

Features added in configuration:

A

ABC

C

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 23 of 39

Here C is added because the requires interdependency in A states that it should be selected.

ABC is also selected because it is the root of the entire application even though it is not a

requirement per se.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 24 of 39

Appendices
The appendices give an informative explanation for the architecture of Dependency engine and

a glossary of key terminology.

Appendix 1: MulSON

MulSON is an in-house developed simple, human readable JSON format for exchanging

requirements, used especially for importing requirements to Mulperi (MulSON = Mulperi Submit

Object Notation). The design of Dependency engine per se is not specific for MulSON and, e.g.,

a ReqIF parser already exists. MulSON is used in the development phase because of the

simplicity and readability needs. Therefore, it is also used in our examples. MulSON is subject to

change and the exact specification for Mulson shall be defined more precisely during the

OpenReq project.

Some key design principles of MulSON

● “Part of” hierarchy is constructed by the subfeature concept and term.

● A parent requirement declares its child requirements

● Two level hierarchy: A grandparent cannot define its grandchildren. However, a

grandparent can define its children who can further declare its children i.e. resulting in

transitively the grandchildren of the grandparent.

● All requirements must be declared.

● Currently supported interdependencies other than above part-of are ‘requires’ and

‘incompatible’. Relationships are binary.

● Example:

[

 {

 "requirementId": "Req1ID",

 "name": "Req1Name",

 "subfeatures": [

 {

 "types": ["SubReqID"],

 "role": "SubReqrole",

 "cardinality": "0-1"

 },

]

 },

 {

 "requirementId": "SubReqID",

 "name": "SubReqName",

 }]

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 25 of 39

Appendix 2: Map application example

A map application example (MapExample hereafter) is used to illustrate and concretize

Dependency engine and the work done in OpenReq. The intention is to show how a set of use

cases is represented as textual requirements and further using a feature model representation for

which different kinds of analyses and interdependency queries can be carried out.

The premise of MapExample is that it is a new product development (NPD) project starting from

the scratch meaning that the existing, already implemented features do not need to be

considered.

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 26 of 39

Use cases of MapExample

MapExample consist of four general use cases as illustrated in Figure A1. The named lines

between use cases illustrate interdependencies.

Figure A1. Use cases of MapExample illustrating the core functionality and use

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 27 of 39

Requirements in textual form

The requirements for MapExample are tabulated in Figure A2 below roughly corresponding to the

use cases. Each requirement has an arbitrary string as a unique ID that has no semantics such

as ‘R1’. Full description is the actual requirement text. We also provide short names for the full

descriptions although such short names are not actually necessary as Dependency engine relies

on IDs. However, for the clarity of this example, it is sometimes more understandable to use these

short names rather than IDs. Finally, the requirements have a set of properties. Some properties

such as the target release are not defined but shall be defined during release planning.

Interdependencies are shown in a dedicated column as a special property. We have refined

Location requirement to two alternative technical requirements GPS and GLONASS that are non-

exclusive.

ID Full description Name Interdependency Priority Effort Release

R1 Show map from a

cloud service

ShowMap Contains optional
part of R1

1 10 -

R2 To store maps

locally

CacheMap 2 5 -

R3 Show user location Location Requires R1
Alternative parts
R3a or R3b.

- -

R3a Determine location

using GPS

GPS 1 9 -

R3b Determine location

using GLONASS

GLONASS 2 8 -

R4 Navigate to a

selected

destination

Navigate Requires R3 2 15 -

Figure A2. Tabulated textual requirements

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 28 of 39

MulSON data exchange

The requirements of map example are stored to and transferred within Dependency engine using

a structured message format. Below is shown MulSON format. Note that we use in “name” the

short names rather than full descriptions for presentation clarity. In practice, Mulperi relies only

on IDs. We represent priority as a changeable property that has been assigned a value. Effort is

a fixed property that cannot be changed but has the value as defined above. The release property

can have values 1, 2 or 3, but none of the values are assigned as defined above.

[

 {

 "requirementId": "MapAppFeature",

 "name": "MapApplication",

 "subfeatures": [

 {

 "types": ["R1"],

 "role": "r1",

 "cardinality": "1-1"

 },

 {

 "types": ["R3"],

 "role": "r3",

 "cardinality": "0-1"

 },

 {

 "types": ["R4"],

 "role": "r4",

 "cardinality": "0-1"

 }

]

 },

 {

 "requirementId": "R1",

 "name": "ShowMap",

 "subfeatures": [

 {

 "types": ["R2"],

 "role": "r2",

 "cardinality": "0-1"

 }

],

 "attributes": [

 {

 "name": "Priority",

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 29 of 39

 "values": ["1", "2", "3"],

 "defaultValue": "1"

 },

 {

 "name": "Release",

 "values": ["1", "2", "3"]

 },

 {

 "name": "Effort",

 "values": ["10"]

 }

]

 },

 {

 "requirementId": "R2",

 "name": "CacheMap",

 "attributes": [

 {

 "name": "Release",

 "values": ["1", "2", "3"]

 },

 {

 "name": "Effort",

 "values": ["5"]

 },

 {

 "name": "Priority",

 "values": ["1", "2", "3"],

 "defaultValue": "2"

 }

]

 },

 {

 "requirementId": "R3",

 "name": "Locations",

 "subfeatures": [

 {

 "types": ["R3a", "R3b"],

 "role": "r3_navitech",

 "cardinality": "1-2"

 }

],

 "attributes": [

 {

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 30 of 39

 "name": "Release",

 "values": ["1", "2", "3"]

 },

 {

 "name": "Priority",

 "values": ["1", "2", "3"]

 }

]

 },

 {

 "requirementId": "R3a",

 "name": "ShowLocation using GPS",

 "relationships": [

 {

 "targetId": "r1",

 "type": "requires"

 }

],

 "attributes": [

 {

 "name": "Release",

 "values": ["1", "2", "3"]

 },

 {

 "name": "Effort",

 "values": ["9"]

 },

 {

 "name": "Priority",

 "values": ["1", "2", "3"],

 "defaultValue": "1"

 }

]

 },

 {

 "requirementId": "R3b",

 "name": "ShowLocation using GLONASS",

 "relationships": [

 {

 "targetId": "r1",

 "type": "requires"

 }

],

 "attributes": [

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 31 of 39

 {

 "name": "Release",

 "values": ["1", "2", "3"]

 },

 {

 "name": "Effort",

 "values": ["8"]

 },

 {

 "name": "Priority",

 "values": ["1", "2", "3"],

 "defaultValue": "2"

 }

]

 },

 {

 "requirementId": "R4",

 "name": "Navigate",

 "relationships": [

 {

 "targetId": "r3_navitech",

 "type": "requires"

 }

],

 "attributes": [

 {

 "name": "Release",

 "values": ["1", "2", "3"]

 },

 {

 "name": "Effort",

 "values": ["15"]

 },

 {

 "name": "Priority",

 "values": ["1", "2", "3"],

 "defaultValue": "2"

 }

]

 }

]

Figure A3. A MulSON representation of MapExample

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 32 of 39

Feature diagram

A feature diagram is a graphical representation of a feature model. A feature diagram does not

contain the properties, such as priority and release, but is an illustration for easier understanding

and communication. Dependency engine does not in fact even construct such as feature diagram.

The feature diagram of MapExample is shown in figure below.

Figure A4. A feature diagram of MapExample

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 33 of 39

Kumbang feature model

Kumbang model describes the structure as defined by individual requirements (or features).

Kumbang is generated from above mentioned MulSON.

Kumbang model ID1730205567

 root component ID1730205567

 root feature ID1730205567

//---components-----

component type ID1730205567 {

}

//---features-----

feature type ID1730205567 {

 subfeatures

 MapAppFeature MapAppFeature[0-1];

}

feature type MapAppFeature {

 subfeatures

 R1 r1[1-1];

 R3 r3[0-1];

 R4 r4[0-1];

}

feature type R1 {

 subfeatures

 R2 r2[0-1];

 attributes

 Priority Priority; //default = 1

 Release Release;

 Effort Effort;

}

feature type R2 {

 attributes

 Release2 Release;

 Effort2 Effort;

 Priority2 Priority; //default = 2

}

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 34 of 39

feature type R3 {

 subfeatures

 (R3a, R3b) r3_navitech[1-2] {different};

 attributes

 Release3 Release;

 Priority3 Priority;

}

feature type R3a {

 constraints

 present(r3_navitech) => present(r1);

 attributes

 Release4 Release;

 Effort3 Effort;

 Priority4 Priority; //default = 1

}

feature type R3b {

 constraints

 present(r3_navitech) => present(r1);

 attributes

 Release5 Release;

 Effort4 Effort;

 Priority5 Priority; //default = 2

}

feature type R4 {

 constraints

 present(r4) => present(r3_navitech);

 attributes

 Release6 Release;

 Effort5 Effort;

 Priority6 Priority; //default = 2

}

//---attributes-----

attribute type Priority = {

 1,

 2,

 3

}

attribute type Release = {

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 35 of 39

 1,

 2,

 3

}

attribute type Effort = {

 10

}

attribute type Release2 = {

 1,

 2,

 3

}

attribute type Effort2 = {

 5

}

attribute type Priority2 = {

 2,

 1,

 3

}

attribute type Release3 = {

 1,

 2,

 3

}

attribute type Priority3 = {

 1,

 2,

 3

}

attribute type Release4 = {

 1,

 2,

 3

}

attribute type Effort3 = {

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 36 of 39

 9

}

attribute type Priority4 = {

 1,

 2,

 3

}

attribute type Release5 = {

 1,

 2,

 3

}

attribute type Effort4 = {

 8

}

attribute type Priority5 = {

 2,

 1,

 3

}

attribute type Release6 = {

 1,

 2,

 3

}

attribute type Effort5 = {

 15

}

attribute type Priority6 = {

 2,

 1,

 3

}

Figure A5. A generated Kumbang feature model representation of MapExample

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 37 of 39

Appendix 3: Demo user interface

The demo user interface is a reference and test implementation of the Mulperi and Milla APIs --

Dependency engine per se is not supposed to have an user interface but user interaction takes

place, e.g., in the dedicated OpenReq interface or plugins. The user interface is currently

implemented in Milla's source code available in, e.g., http://localhost:9203/example/gui. It is

written as a simple HTML page and a single vanilla Javascript file.

Under the “Generate model” section (upper part of Figure A6), different formats can be pasted

into the Payload textarea and sent to a specific URL, for example Milla's Jira parser, Milla's

MulSON relay or straight to Mulperi. After a successful model generation, the Model name in

“Select requirements” is populated as per the API response (middle part of Figure A6).

When selecting the requirements (lower part of Figure A6), the first thing to do is to Get options

that returns a hierarchy of the selectable requirements and their properties. One can then select

any requirements and then press the Get configuration button that results in Milla calling Mulperi

and further SpringCaaS. If the configuration is successful, all inferred requirements and properties

are selected. In case of an error or an impossible configuration, an error message is displayed.

One or more calculation constraints can be added by the Add sum constraint button. Autosubmit

and autohide features enable to customize the behavior of the user interface that some may find

convenient.

A video of the user interface in action with the Map Application and Qt Jira use cases can be

found on the YouTube channel of Empirical Software Engineering research group of University of

Helsinki. https://www.youtube.com/channel/UC5fXWiZVFSTTFe_U1EfpU-Q

https://www.youtube.com/channel/UC5fXWiZVFSTTFe_U1EfpU-Q

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 38 of 39

Figure A6. A screenshot of the demo user interface

D5.2 Requirements Dependency Engine Version 1

© HITEC, TUGRAZ, ENG, UPC, VOGELLA, SIEMENS, UH, QT, WINDTRE Page 39 of 39

Appendix 4: Glossary

General terminology

Configuration An instance derived from a Kumbang model. Contains individual
features (corresponding to requirements) arranged in the part-
of hierarchy and properties of the individual features
Configurations returned by SpringCaas are consistent.

(Configuration) Model A representation of requirements/features and their relations to
each other (parent/child, depends on, is incompatible with, etc).

Major software components / Modules

Mulperi A Java Spring server software that converts different input
formats into 1) Kumbang models and 2) configuration or
analysis requests - and forwards them both to CaaS

SpringCaaS
(CaaS2017/CaaS)

Configurator-as-a-Service, processes Kumbang models and
creates configurations using an inference engine. CaaS2017 is
a newer version with Choco Solver support and SpringCaaS is
a Spring Boot version of CaaS2017.

Choco Solver An inference engine library component used by SpringCaaS.
Supersedes Smodels. BSD licence. www.choco-solver.org

Smodels Older inference engine used by CaaS, replaced by Choco
Solver in newer versions. GPL 2 licence. ASP-based.

Milla A service, whose purpose is to isolate development of system
specific integrations from general purpose Mulperi and
SpringCaaS service. Supports volatile APIs and converts them
to MulSON for Mulperi. A relay software that can be used to alter
data before sending it to Mulperi.

File formats

MulSON Mulperi Submit Object Notation, Mulperi's native requirement
input format, in JSON

ReqIF Requirements Interchange Format, a standardized alternative to
MulSON, in XML. Currently not fully supported.

Kumbang A software product line/variability modeling conceptualization
and language. The Dependency Engine applies features and
related concepts of Kumbang to model and analyze
Requirements.

